Tracing Abstractions through Generation

Software Transformation Systems Workshop,
GPCE 2004

Karl Trygve Kalleberg

Hniversity of Bergen Utrecht Hniversity
<karltk@jii.uib.no> <karltk(@cs.uu.nl>

) Work funded by the Norwegian Research Council



CodeBoost

Legend:
C++ - ) framework
onfiguration
Type files extension point
Inferencer

Q data

Source code

C++
parser

AST

Semantic
analysis

Pretty
printer

Optimized
source code

Command Line Interface

Software Transformation Systems Workshop 2004

Tracin g Abstractions through Generation




SDS: Software Development Foundation

Legend:

framework

core format

data

Lo

Python
parser

Python
source code

C++
parser

C++
source code

Java
parser

Java
source code

Lisp
parser

Lisp
source code

Command Line Interface

Software Transformation Systems Workshop 2004

Tracing Abstractions through Generation




Spoofax in-a-sketch

Basic

pipeline

C++

4 Unparser
|F Parser

Boxing

Java

4 Unparser
|F Parser

Boxing

C

4 Unparser
|F Parser

Boxing

Stratego

< Unparser
|F Parser

Boxing

C++

Type
Inferencer

Java

Type
Inferencer

Documentation
System

Code
Analyzer

Software
Visualizer

in progress
framework

extension point

Documentation

Reports

Call
Graphs

Class
Graphs

Command Line Interface

Eclipse Extension

Tracing Abstractions through Generation

Software Transformation Systems Workshop 2004




Problem description

Legend:

Jos

; transformation
’ compiler

domain configuration

domain-specific code

»
=

transformation
phase

domain-specific
code

generated

compilation
source

phase

Software Transformation Systems Workshop 2004

Tracin g Abstractions through Generation




Some sketched solutions

* Transformation phase
* Use syntactically correct, semantically aware transformations
* Support interactive replay

e Maintain trace of abstraction throughout complete pipeline
e J.e. reverse arrows

* Compilation phase
* Relate line numbers in generated source to domain abstractions
* Problematic for glue code
* Deployment phase
* Relate target abstractions to domain abstractions
* Runtime phase
* Relate runtime exceptions to domain abstractions

* Debugging phase
e Support language embedding

Software Transformation Systems Workshop 2004

Tracing Abstractions through Generation




Concluding remarks

* Not fundamental research, so why bother?
* Code generator pipelines seldom transparent
* Another reason for people to write their own, custom
transformation systems
* Hampers productivity and happens often

* No obvious, established and employed techniques
* Can a “best-practice” be suggested?

Software Transformation Systems Workshop 2004

Tracing Abstractions tbrough Generation




