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SDS: Software Development Foundation
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Problem description

Legend:

Jos

; transformation
’ compiler

domain configuration

domain-specific code

»
=

transformation
phase

domain-specific
code

generated

compilation
source

phase

Software Transformation Systems Workshop 2004

Tracin g Abstractions through Generation




Some sketched solutions

* Transformation phase
* Use syntactically correct, semantically aware transformations
* Support interactive replay

e Maintain trace of abstraction throughout complete pipeline
e J.e. reverse arrows

* Compilation phase
* Relate line numbers in generated source to domain abstractions
* Problematic for glue code
* Deployment phase
* Relate target abstractions to domain abstractions
* Runtime phase
* Relate runtime exceptions to domain abstractions

* Debugging phase
e Support language embedding
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Concluding remarks

* Not fundamental research, so why bother?
* Code generator pipelines seldom transparent
* Another reason for people to write their own, custom
transformation systems
* Hampers productivity and happens often

* No obvious, established and employed techniques
* Can a “best-practice” be suggested?
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