
An Incremental Aspect-Oriented Product Line Method for
J2ME Game Development

Position Paper

Vander Alves
vra@cin.ufpe.br

Pedro Matos Jr.
poamj@cin.ufpe.br

Paulo Borba
phmb@cin.ufpe.br

Informatics Center
Federal University of Pernambuco

Recife, Pernambuco, Brazil

1. INTRODUCTION
Game development for mobile devices must address a sig-
nificantly high number of variations. These arise due to
variable device capability, which implies constraining appli-
cation features to meet available resources in specific de-
vices. Managing such variation thus play a key role in the
development process, for which the product line approach is
suitable. However, in practice, organizations will not shift to
this approach from scratch; there are frequently some exist-
ing products which should be integrated into the approach.
Nevertheless, guidance in this direction is still rare.

In this context, this paper describes an incremental process
for structuring a product line from existing mobile device
game applications. The process relies on continuous refac-
toring and Aspect-Oriented Programming to isolate commu-
nality from variability latent within the products. We ap-
plied this process to an initial set of three industrial-strength
games and evolved them into a single product line. There-
after, evolution was performed on the single product line
rather than on the individual products.

2. DOMAIN DESCRIPTION
Game development for mobile devices is a domain with busi-
ness and technical constraints for which the product line
approach is likely to be suitable. Numerous functional vari-
ations are possible for a single game type, and each game
may have to be deployed in a dozen of devices. Addition-
ally, device selection may constrain application features due
to limited resources.

We address game development for mobile phones using J2ME’s
MIDP 1.0 profile, which is targeted at mobile devices with
constrained resources, including reduced memory and com-
puting power, and intermittent low-bandwidth connectiv-

ity [4]. Although MIDP 1.0 is supported by a number of
devices, a considerable number of these still make exten-
sive use of proprietary Application Programming Interface
(API), exploring device enhancements, such as advanced
graphics and sound manipulation. Moreover, there is still
variation related to memory and computing power, which
impacts on application features. The resulting software is
thus highly variant.

Within our scope, we explore the platform variation aris-
ing due to use of proprietary API and limited memory. In
particular, we consider three platforms (PA, PB , and PC)
on which the same game GM is run. PA relies solely on
MIDP 1.0, whereas PB and PC rely on MIDP 1.0 and pro-
prietary API. Further, PC constrains bytecode size to half
of the other platforms. GM is an industrial-strength game,
whose main screen is illustrated by Figure 2.

Figure 1: Platform variation of the GM game

3. APPROACH
The goal is to structure a product line around GM so that it
can be easily configured for any of the platforms PA, PB , or
PC . The outline of our approach is as follows. First, given
GM in PA and PB , we identify variation points, refactor



code to encapsulate these points, and extract the specialized
behavior into AspectJ aspects. The outcome is an aspect for
introducing the specifics of each of these two platforms and
an abstract GM, which we refer to as GMAbs. Figure 2
illustrates the first step of our approach.

Figure 2: Approach outline

Next, the resulting product line is considered with the re-
maining product, and we reapply the previously described
procedure. The result is a new product line encompassing
all three products.

The identification of specific variation points related to plat-
form variation is carried out with help of a diff-like tool, but
this can be improved as Section 4 explains. When refactor-
ing the original code to extract variation, extensive use is
made of the Extract Method refactoring. However, in some
cases we directly apply object-to-aspect refactorings: with
fine-grained variations such as constant and attribute defi-
nitions, and with scattered method calls. In either case, the
variation is mapped directly into an aspect construct, such
as inter-type declaration or pointcut-advice.

The approach is incremental: from a game independently
developed in two platforms, we arrive at a product line in-
frastructure containing the abstract game GMAbs and two
aspects, one for customizing GMAbs back to the original
platform and another for customizing GMAbs to the new
platform. At this stage, we apply the method once again to
incorporate another platform into the product line infras-
tructure, which also results in a new customizing aspect for
this platform.

4. EVALUATION
The previously described approach was applied in structur-
ing a product line of game GM in three platforms. We
started from GM independently deployed in PA, PB , and
PC , and applied the method twice in order to develop the
product line infrastructure.

Following the process in this domain, we noticed that most
variation points were considerably fine-grained and consisted
of scattered method calls to proprietary API and of differ-
ent arguments being specified for drawing method calls. In-
deed, only few variation points were coarse-grained, such as
changing the type hierarchy of the GM’s main screen class.
In addition, the task of finding specific platform variation
points was performed with help of diff-like tools. This, how-
ever, could be automated partially with the help of aspect
mining tools [2].

When extracting variant code into an aspect, we noticed
that some replicated code still remained in the aspects. This

is not surprising because the platforms are similar, despite
their API differences. On the other hand, this suggests that
some generic mechanism should be incorporated into the
approach. We might extend ours to use generic aspects [3].

Furthermore, the special case of mapping scattered variation
into pointcut and advices may lead to noticeable increase in
bytecode size. In fact, this could double bytecode size of
a single class. Since the games run on devices with con-
strained resources, this is an issue which must be addressed.
We addressed this by identifying more optimized pointcuts,
which prompted only a 8% bytecode size increase, and in
this case the application could still fit into the device. An-
other possibility would be to rely on more static approaches
to handle crosscutting. To this end, we are considering in-
tegrating the use of more general program transformation
engines, such as JaTS [5].

The incremental approach implies that the abstract prod-
uct line artifact, GMAbs, evolves whenever a new game is
added into the infrastructure, since GMAbs may have to be
refactored to expose some customized behavior for the new
product. Because this happens, there might be a chance that
one aspect, customizing GMAbs for another previously in-
corporated game, need to be adapted. This interference can
be noticed by tools which show aspects customizing GMAbs

and could be handled semi-automatically by aspect-aware
refactorings [1].

5. CONCLUSION
In practice, moving to the product line approach means deal-
ing with existing products, which in the game development
domain, can be highly variant due to platform variation,
functional variation, and the synergy between both. This
paper presents an effective migration method to the prod-
uct line approach. By relying on AOP and refactoring, it has
been possible to effectively and modularly factor out plat-
form variation into aspects and later compose them with the
application core. In addition, the approach has been applied
to industrial-strength applications and points for further im-
provement have been identified.

6. REFERENCES
[1] O. C. Hanenberg S. and U. R. Refactoring of

aspect-oriented software. In Net.ObjectDays, Erfurt,
Germany, September 2003.

[2] J. Hannemann and G. Kiczales. Overcoming the
prevalent decomposition in legacy code. In Workshop
on Advanced Separation of Concerns in Software
Engineering at ICSE 2001, Toronto, Canada, May 2001.

[3] G. Kniesel and T. Rho. Evolvable pattern
implementations need generic aspects. In ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for
Software Evolution, Oslo, Norway, June 2004.

[4] S. Microsystems. JSR-000037 Mobile Information
Device Profile (MIDP). World Wide Web,
http://jcp.org/aboutJava/communityprocess/final/-
jsr037/index.html, 2000.

[5] F. U. of Pernambuco. JaTS - Java Transformation
System. World Wide Web,
http://www.cin.ufpe.br/˜jats/, 2001.


