
Model-driven Software Tools for Configuring and Customizing
Middleware for Distributed Real-time and Embedded Systems

Arvind S. Krishna
�

, Emre Turkay
�

, Cemal Yilmaz
�

,
Douglas C. Schmidt

�

, Aniruddha Gokhale
�

, Atif Memon
�

, Adam Porter
�

�

Dept. of Computer Science, University of Maryland, College Park, MD 20742
�

Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37203

ABSTRACT
Middleware is increasingly being used to develop and deploy large-
scale distributed real-time and embedded (DRE) systems in do-
mains ranging from avionics to industrial process control and fi-
nancial services. To support a wide range of DRE systems with
diverse quality of service (QoS) needs, middleware platforms of-
ten provide scores of options and configuration parameters that en-
able it to be customized and tuned for different use cases. Sup-
porting this level of variability, however, can significantly compli-
cate middleware and application configuration. This problem is
exacerbated for developers of DRE systems by the lack of doc-
umented patterns of middleware configuration and customization
(C&C) that resolve key variability challenges. This paper describes
how domain-specific languages and model-driven generative pro-
gramming techniques can be used by middleware developers to
codify reusable patterns of middleware configuration and customiza-
tion.

1. EMERGING TRENDS AND CHALLEN-
GES

Large-scale DRE systems increasingly execute on a range of
middleware platforms, user contexts, and different application do-
mains. To ensure that the applications and middleware meet their
quality of service (QoS) requirements in the face of multi-dimensi-
onal variability (such as different workloads, operating systems,
middleware, and application feature sets, compiler flags, and/or
run-time optimization settings), the software infrastructure for DRE
systems must be highly tunable, i.e., provide 10’s-100’s of con-
figuration options to customize itself and applications for specific
environments and requirements. Quality assurance (QA) of these
customizations have traditionally been performed in-house. Unfor-
tunately, using in-house QA processes for these DRE systems has
the following limitations:

Limited testing capability.. In-house QA processes often fail
to assure software quality since they do not manage software vari-
ability effectively. For example, in-house QA processes can rarely
capture, predict, and recreate the run-time environment and usage
patterns that will be encountered in the field on all supported target
platforms across all desired system configuration options.

Lack of proper QoS validation due to variability in op-
erational contexts.. Assessing QoS on a few possible configu-

Copyright is held by the author/owner.
ACM 0-89791-88-6/97/05.

rations/platforms and then extrapolating these to the entire config-
uration space may be invalid since configuration options that max-
imize QoS for a particular set of hardware, OS, and compiler plat-
forms may not produce optimal QoS for a different configuration.
As a result, many performance bottlenecks and QoS degradation
escape detection until systems are fielded.

To address software variability and its impact on QoS, we need
software processes that aid in systematically and efficiently evalu-
ating system QoS as well as tools that synthesize artifacts (such as
benchmarking regression suite) for estimating system QoS on var-
ious configuration options. Our ultimate goal is to identify patterns
of recurring configurations of software that satisfy systems QoS
for various types of DRE systems in different domains. We are
validating our approach on a range of hardware, OS, and compiler
platforms by integrating the following technologies:

Distributed continuous quality assurance (DCQA) tech-
niques [5].. These techniques are designed to improve software
quality and performance iteratively, opportunistically, efficiently,
and continuously in multiple, geographically distributed locations [5].
We have developed a prototype DCQA environment called Skoll
(www.cs.umd.edu/projects/skoll) that help resolves chal-
lenges associated with ensuring software attributes (such as func-
tional correctness and performance) across diverse platforms by ex-
ecuting QA tasks continuously and intelligently across a grid of
computers distributed around the world.

Model-driven software development techniques.. These
techniques are designed to minimize the cost of QA activities by
capturing the configuration and customization (C&C) variability of
middleware within models and automatically generating configura-
tion files from these higher level models [3]. We have developed
prototype model-driven software tools in the CoSMIC project [2],
including (1) the Options Configuration Modeling language (OC-
ML) [6] that allows developers to model middleware configura-
tion options as high-level models and (2) model-driven test and
benchmarking tools (BGML) [4] that allow developers to compose
benchmarking experiments that observe QoS behavior by mixing
and matching middleware configurations.

2. ADDRESSING C&C CHALLENGES US-
ING MODEL-DRIVEN DCQA

Our experience to date [5, 4] indicates that model-driven DCQA
techniques help capture configurations that can achieve end-to-end
QoS on diverse hardware, OS, and compiler platforms. These tech-
niques have not yet been shown to reduce the time required to iden-
tify configuration options that maximize the QoS for a given appli-



cation, however, due to the following unresolved challenges:
� Lack of effective configuration space exploration tech-

niques, which increase the number of potential configura-
tions that must be evaluated empirically to identify candidate
configurations that maximize QoS in a particular context.� Lack of reusable configurations applicable across domains,
which require DRE application developers to (re)explore the
configuration space and expend effort that would otherwise
have been minimized had there been proven and reusable
documented configurations.

To help resolve these challenges, we are applying the following
two-pronged approach:

The Skoll DCQA environment.. We use Skoll to evaluate
configuration options and identify/validate configuration solutions
that are applicable across a wide range of hardware, OS, and com-
piler platforms. The Skoll environment includes languages for mod-
eling system configurations and their constraints, algorithms for
scheduling and remotely executing tasks, and analysis techniques
for characterizing results.

Capture software variability as C&C patterns.. A design
pattern presents a solution to a common software problem within a
particular context [1]. A C&C pattern is similar to a design pattern
in that it represents a recurring solution to a configuration and cus-
tomization problem arising within a particular context, e.g., for a
certain domain, such as middleware, web services, or database sys-
tems. C&C patterns are expressed as tuples consisting of configura-
tion parameters and their settings for each individual platform that
help developers identify options that significantly influence QoS
and provide feedback that can be used to choose configurations
that assure QoS. For example, Table 1 illustrates a configuration for
ACE+TAO middleware that maximizes throughput for applications
that do not need concurrency. These options and their settings rep-

Notation Option Name Option Settings
o1 ORBProfileLock

�
Null �

o2 ORBClientConnectionHandler
�
RW �

o3 ORBTransportMuxStrategy
�
EXCLUSIVE �

o4 ORBConnectStrategy
�
reactive �

Table 1: A C&C Pattern for Single-threaded Applications

resent a C&C pattern that can be reused for similar contexts across
several domains and have a significant influence on performance,
irrespective of other configuration options and their settings.

Below, we briefly describe how we have used Skoll and its model-
driven tool suite on a range of platforms (including Windows, Linux,
Solaris, and several real-time operating systems) to identify config-
urations that impact performance significantly and document them
as C&C patterns:

Step 1: Define the application scenario. At the highest
level, users employ the model-driven OCML and BGML tools in
CoSMIC to depict the interaction between their components and
objects.

Step 2: Create benchmarks using the model-driven
BGML tool. The model interpreters in OCML and BGML tra-
verse the models to synthesize the configuration and experimenta-
tion code. The OCML interpreter generates the configuration files

while the BGML interpreter generates the required benchmarking
code, i.e., code to set-up, run, tear-down the experiment.

Step 3: Evaluate configurations using DCQA processes.
The configured experimentation code can next be fed to the Skoll
DCQA environment which does exhaustive testing to run each can-
didate configuration.

Step 4: Collect exhaustive data to identify C&C pat-
terns. The data from the configurations are stored in an internal
database and analyzed to observe behavior applicable across a wide
range of platforms. The configuration that caused this behavior is
documented as a C&C pattern.

2.1 Concluding Remarks
Software for DRE systems needs to be fine-tuned to specific

user platforms/contexts to meet end-to-end QoS requirements. This
variability can yield an explosion in the software configuration space,
which places enormous demands on the developers who must must
ensure that their decisions and modifications work across this large
(and often changing) configuration space. Our codification of reusable
configurations and customizations as C&C patterns is helping to
formalize QoS design expertise and is enabling their reuse across
several application domains, thereby minimizing unnecessary ef-
fort expended in rediscovering these C&C patterns for each appli-
cation domain.

3. REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal. Pattern-Oriented Software Architecture—A System of
Patterns. Wiley & Sons, New York, 1996.

[2] A. Gokhale, K. Balasubramanian, J. Balasubramanian,
A. Krishna, G. T. Edwards, G. Deng, E. Turkay, J. Parsons,
and D. C. Schmidt. Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed
Real-time and Embedded Applications. The Journal of
Science of Computer Programming: Special Issue on Model
Driven Architecture, 2004.

[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-Integrated Development of Embedded Software.
Proceedings of the IEEE, 91(1):145–164, Jan. 2003.

[4] A. S. Krishna, D. C. Schmidt, A. Porter, A. Memon, and
D. Sevilla-Ruiz. Improving the Quality of
Performance-intensive Software via Model-integrated
Distributed Continuous Quality Assurance. In Proceedings of
the 8th International Conference on Software Reuse, Madrid,
Spain, July 2004. ACM/IEEE.

[5] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed Continuous
Quality Assurance. In Proceedings of the 26th IEEE/ACM
International Conference on Software Engineering,
Edinburgh, Scotland, May 2004. IEEE/ACM.

[6] E. Turkaye, A. Gokhale, and B. Natarajan. Addressing the
Middleware Configuration Challenges using Model-based
Techniques. In Proceedings of the 42nd Annual Southeast
Conference, Huntsville, AL, Apr. 2004. ACM.


