
Managing Variabilities with Generative Approaches 
 
 

 
Iris Groher 
Siemens AG 

Otto-Hahn-Ring 6  
81739 Munich, Germany 

groher@informatik.tu-
darmstadt.de 

 
 

  
 

 
 

A software product line consists of a family of software systems 
that have some common functionality and some variable 
functionality. Clements and Northrop [1] define a software 
product line as “a set of software-intensive systems sharing a 
common, managed set of features that satisfy the specific needs of 
a particular market segment or mission and that are developed 
from a common set of core assets”.  

Feature models play a central role within product line 
development as they allow a uniform representation of the 
variabilities and commonalities of the potential products of the 
product line. These concepts were originally introduced by the 
Feature-Oriented Domain Analysis (FODA) method [2] which 
uses features that are organized into a feature tree. Feature models 
can be used to model the problem domain within the product line 
development. A concrete feature set then represents the 
requirements for one concrete product. Feature sets can be chosen 
by a customer in order to configure a product.  

With feature models a predefined set of relations and 
dependencies between features can be expressed. Features can for 
example be mandatory, optional or alternative (see [3] for more 
details). Figure 1 illustrates a small example of how a feature 
model for a simple car could look like. The car has two 
mandatory features (indicated by the filled circle) named Car 
body and Engine and one optional feature (indicated by the empty 
circle) named Multimedia system. 

 

Car

EngineCar body Multimedia system
 

Figure 1: Feature model for a simple car 

 

We argue that current feature-oriented modeling approaches have 
important limitations with respect to expressing the interactions of 
features. For expressing advanced kinds of feature interactions, 
the available set of feature relations within feature models is not 
sufficient. To illustrate our point we will give an example of a 
multimedia system for a car. The system consists of four optional 
features, named Email system, DVD player, Radio, and 
Personalization (as illustrated in Figure 2). 

Multimedia system

RadioDVD player PersonalizationEmail system  
Figure 2: Feature model for a simple multimedia system 

 

The feature Personalization allows different users of the 
multimedia system to configure it for their special needs and to 
store their preferences within the system. Personalization 
influences the feature Radio as a special (probably more 
expensive) type of radio has to be selected when Personalization 
is present. It allows the user to select a preferred radio station that 
can be stored within the radio. The feature Personalization 
influences the features DVD player and Email system in the same 
way as the selected type of player or email client has to support 
the storage of different user preferences. So the Personalization 
feature interacts with all other features in order to get information 
about the user preferences specific to each of these features. 
Within the solution domain (implementation model1), the 
implementation of the feature Personalization will crosscut the 
implementations of several other features. Personalization will 
therefore be called a crosscutting concern in the AO sense. As 
these crosscutting feature interactions can already be identified 
within the problem domain, we call the feature Personalization a 
crosscutting feature.  

As stated before, current feature-oriented modeling approaches 
are weak with regard to expressing crosscutting feature 
interactions within the problem domain of software product lines. 
We argue that (crosscutting) feature interactions should be 
expressed in feature models within the problem domain. To 
capture interaction points of features we introduce the notion of 
feature join points. In order to provide these kinds of join points 
we offer mechanisms to describe the dynamic characteristics of 
features. A behavioral view of the system has to be offered in 
order to express the interactions among participating features. 
Important questions that arise in this context include: What is the 
right granularity level of feature join points? Does a textual 
description of feature join points (using e.g. XML) suffice? 

                                                                 
1 We use the terms solution domain and implementation model 
synonymously. 



To manage variabilities in design and code, features and their 
relations or interactions have to be handled consistently within the 
problem domain and the solution domain of software product 
lines. Within the solution domain generative approaches can be 
used to build generative models for families of systems and 
generate concrete systems from these models. Our work focuses 
on two very powerful implementation technologies for generative 
programming, named aspect-oriented approaches (e.g. [4]) and 
generators (e.g. [5, 6]). Aspect-oriented approaches offer the 
possibility of not having to map certain features from the problem 
domain to sets of scattered little components in the solution 
domain. Interactions can be expressed using AOPs notion of join 
point interception. Crosscutting features can be mapped directly 
to single, well localized aspects in the solution domain. 
Generators, the second implementation technology we focus on, 
are programs that take a higher-level specification of a piece of 
software and produce its implementation [3].  GenVoca 
generators [6], for example, synthesize programs by composing 
modules that implement features. Distinct programs in the product 
line are described by distinct combinations of features. 

Our work consists of three parts (as illustrated in Figure 3). The 
first part concentrates on specifying crosscutting feature 
interactions within the problem domain. So called feature join 
points should allow expressing complex feature interactions in 
feature models. For this purpose the dynamic characteristics of 
features have to be expressed explicitly. The second part 
concentrates on the design of code base assets for a software 
product line and their implementation model. It includes the 
mapping of (crosscutting) features to concrete software 
architectural building blocks (components, aspects, templates…).  
Feature join points are mapped to concrete join points in the AO 
sense. Within the last part support is provided to automatically 
generate concrete products using generative approaches for 
linking the software architectural building blocks. We want to 
investigate how far we get with generative approaches2 and focus 
on answering the following question: Is it possible to 
automatically produce a concrete member of the product line 
without manually changing or writing any glue code? 

 

 
Figure 3: Product line development 

 

The basic idea is to improve product line development and 
variability management using generative approaches to handle 
(crosscutting) feature interactions within each phase of the 
development process. Generative approaches allow the automatic 
generation of concrete products when used for component 
binding. The main goal of our work is to prove the assumption 
that generative approaches improve product line development and 
that they do a better job in capturing and composing individual 
features. 
                                                                 
2 Within the domain of generative software development, we 

focus on aspect-oriented approaches and generators. 

REFERENCES 
[1] P. Clements and L. Northrop. Software Product Lines: 

practices and patterns. Addison-Wesley, 2002. 

[2] K. Kang at al. Feature-Oriented Domain Analysis (FODA) 
Feasibility Study. Technical Report, CMU/SEI-90-TR-21, 
Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh, PA, 1990. 

[3] K. Czarnecki and U. Eisenecker. Generative programming: 
methods, tools, and applications. Addison-Wesley, 2000. 

[4] M. Mezini and K. Ostermann. Variability Management with 
Feature-Oriented Programming and Aspects. Foundations of 
Software Engineering (FSE-12), ACM SIGSOFT, 2004. 

[5] OpenArchitecturWare Generator Framework, 
http://sourceforge.net/projects/architecturware 

[6] D. Batory and S. O’Malley. The design and implementation 
of hierarchical software systems with reusable components. 
ACM Transactions on Software Engineering and 
Methodology, 1(4):355-398, 1992. 

 


