
 1

Applying CAESAR to software product lines in the context of
hardware devices

Egon Wuchner
Siemens AG

Otto-Hahn-Ring 6
81739 Munich, Germany

egon.wuchner@siemens.com

ABSTRACT
Features of complex hardware devices like a magnetic
resonance machine often stem from new hardware
capabilities involving the exchange or addition of a whole
set of hardware units and their software. Product lines of
such systems can be organized along the lines of such
system families of collaborative hardware units and their
software. Additionally, health devices have to comply with
strict regulations in order to prevent any danger for a
patient. Thus, amending a system family or adding one in
order to cover a new feature has to guarantee the
installation of allowed combinations only. This paper
tackles the challenges of software product lines for
hardware devices from an architectural/design point of
view. We provide a solution approach by using CAESAR,
a new aspect-oriented language. We identify certain
restrictions of CAESAR and propose to extend its binding
mechanism.

1 INTRODUCTION AND EXAMPLE
Product lines and/or system families of software are
normally discussed in the context of features. Vendors of
software systems and tools should be enabled to compose
and price their software according to the specific needs of a
customer or market. Additionally, there is another source of
software product lines with its own facets, difficulties and
challenges. For example vendors of medicine devices like a
high-end magnetic resonance or a computer tomography
machine have to combine a bunch of hardware units which
has to be controlled and operated by the corresponding
software system.

A new feature often stems from new hardware capabilities,
e.g. a rotating patient table that supports a magnetic
resonance machine to compute a new kind of patient
images. But the software modifications are not restricted to
the table hardware unit and the algorithmic part computing
the images only. Either other hardware units like a display
already existent in the system are involved and have to be
replaced in order to show the degree of rotation. Or new
units have to be added to the system.

The example of a rotating table is simple but totally
sufficient to demonstrate the software challenge of different
combinations of hardware units supporting a feature. Such
a new table has implications on other hardware units. For

instance the patient lying in the tube of a magnetic
resonance might sense a rotating tube as scaring since it
partially covers the entry and exit of the table into the tube.
Thus it requires light and ventilation of different levels
inside the patient tube.

In addition the old display showing the table position has to
be adapted in several ways. The new position of the third
dimension or the degree of rotation has to be displayed, too.
Furthermore the current ventilation and light levels have to
be included into the display as well. Next table gives an
overview of old and new hardware devices by specifying
the respective classes, their responsibilities and
collaboration with each other.

Class Responsibility Collaboration

old
table

moving the physical
table in x, y direc-
tions, providing in-
formation about the
current position of
both directions.

with the display to show
the table positions in x,
y directions by
notification.

old
display

displaying x, y
positions of the table

-

new
table

old table plus moving
the physical table in a
third direction (z) and
providing informa-
tion about this
directional position.

with ventilation and
light: switching it on/off
with rotating start and
fine-tuning the
ventilation/light with
increasing rotation.

with new display to
display the z-position of
the table by notification.

ventilat
ion/
light

switching the
physical devices
on/off, level of
ventilation/light can
be set

-

new
display

displaying the z
position, displaying
the level of
ventilation/light

-

 2

The new hardware configuration of a rotating table consists
of a rotating table, new ventilation/light devices and a
replaced display. But there are other valid combinations of
old and new hardware as well. For example a customer
might wish a rotating table in order to harness the new
measurement capabilities. But he does not insist on a new
display since he considers it sufficient to check the new
position, the ventilation and light manually, by sight or
noise. On the other hand a new table makes ventilation and
light obligatory. Next table separates these combinations
into recommended, possible and forbidden ones:

Recommended

new table vent./light new
display

new configuration
includes all

“ “ old
display

less expensive but
new configuration,
doctor has to check
Vent/light by sight
and noise

Possible

old table

no
vent./light

old
display

old configuration

“ “ new
display

no value-added

“ vent./light

old
display

luxery, but possible

“ “ new
display

even more luxery,
but possible

Forbidden

new table no
vent./light

old
display

forbidden since it
might endan-ger the
patient

“ “ new
display

does not make sense

Relying on this example we go on with Section 2 stating
the problems subsequent sections aim at. Section 3
provides a solution approach using CAESAR, a new
aspect-oriented language allowing to express and to
specialize abstract collaboration interfaces (ACIs)
supporting the notion of family polymorphism. The last
section explores specific shortcomings of CAESAR which
have shown up during the elaboration of our solution
approach. Finally, it suggests possible extensions to
CAESAR in order to overcome these drawbacks. Conclu-
ding Remarks summarize the benefits of this approach.

2 PROBLEM STATEMENT
The table control example from the introductory section
can be considered as a system family. Each software part
specific to an affected hardware unit of the table control
family has to reflect these new or changed capabilities. But
the challenges with respect to the software of such a
hardware control system family go beyond and are
manifold. In general, the collaboration between these new
hardware units and their cooperation with involved and
kept hardware units has to be adapted in a compliant way.
For instance, a new table class can not be reused in
combination with an old display since it requires the
display to be able to receive “display ventilation” requests.

Except for totally new hardware configuration fully
supporting a new feature several other hardware
combinations seem feasible and reasonable. These half-old,
half-new configurations partially include old hardware
units and a set of new ones providing the new feature but
with some restrictions (e.g. concerning its convenient
operation).

Take the two recommended members of the table control
system family. Even these two related members require a
different implementation of the new table class despite
providing the same interface. The first family variant of
table control contains a new table activating light,
ventilation and displaying their operational level on the
new display during a rotation. Compared to this scenario
the new table of the other recommended variant interacts
with ventilation and light without notifying the old display
of these activities. Generative approaches are certainly able
to deal with such variations but following additional
challenges have to be met:

Possible, but dangerous mix of types from different
variants of a system family: excluding the generation of
forbidden variants by mistake does not suffice.
Furthermore, it is essential to exclude mixing types of one
family member with types of another one coincidentally.
Let us keep to both recommended variants again in order to
illustrate this point. Using the new table implementation of
the second variant within the context of the first one can
hardly be prevented at compile-time since they only differ
in their implementation. But it leads to table control
misbehaviour because of lacking notifications of this new
table implementation requesting the new display to show
ventilation, light and rotational activities. Keeping in mind
that health-devices are subject to very strict regulations,
mixing types of different family members might have
unpredicted impact on a patient.

On-site changes without a reinstallation of the whole
system: customers already running a magnetic resonance
machine wish the new hardware units and the software to
be introduced to their machines on site. Consequently, the
table control system family and other family instances
represent the right granularity of such partial deployments

 3

without a restart. Thus, guaranteeing the installation of
consistent variants only is even more important.

3 SOLUTION APPROACH WITH CAESAR
CAESAR ([1], [2]) allows to define abstract collaboration
interfaces (ACI) containing several nested interfaces
interacting with each other to a high degree. For instance
all classes of a new configuration like table, ventilation,
light, display addressing this special issue of table control
can be captured as nested interfaces within such a
collaboration interface. A system family can be mapped to
a collaboration interface and derived collaboration
interfaces might capture the variants of it.

Furthermore, CAESAR requires a binding class specifying
how an implementation of a collaboration interface is to be
bound to the rest of the software system. Within the context
of the presented problem, a collaboration interface of a
system family variant is accompanied by a binding to the
old table and display classes of an existent and running MR
system.

Besides its support of seamless integration of design results
like ACIs and their implementation on code level,
CAESAR provides the feature of family polymorphism.
This mechanism guarantees that no nested interface
implementation instances of different ACIs are able to
interact. Only implementations of interfaces of the same
ACI can work together, thus building a family of
collaborative instances. Consequently, types and instances
of different family variants (recommended, possible and
forbidden) can not be mixed by mistake. By the way
different variants of a family are already expressed on
design and code level.

Last but not least, another advantage of CAESAR is its
“on-demand modularization” feature which supports doing
the binding of an existent system with a certain ACI
implementation on demand. Hence, doing deployment of a
new configuration without a complete software update
seems feasible.

Applying CAESAR
A solution approach has to start with an answer to the
question how to express a system family of old and new
configurations of table control in the software. This section
assumes an existing system containing a non-rotating table
and its normal display. This system (Table and Display) is
the base of further configurations and can be considered as
already delivered to customers.
package MrSystem;

class Table {
 Table(Display display) {this.display=display};

 int moveX(int xPos) {…;
 this.display.displayX(xPos); …
 };

 int moveY(int yPos) {…;

 this.display.displayY(yPos); …
 };
 …
}

class Display {
 …
 void displayX(int xPos) {…};
 void displayY(int yPos) {…};
}

A new configuration of table control involving a rotating
table, a new display, ventilation and light control can be
expressed in a modularized way within an abstract
collaboration interface called TableControl.
collaboration interface TableControl {
 provided Display getDisplay();
 provided VentControl getVent();
 provided LightControl getLight();

 interface Table {
 expected int moveX(int xPos);
 expected int moveY(int yPos);
 provided int rotate(int degree);
 }

 interface Display {
 expected void displayX(int xPos);
 expected void displayY(int yPos);
 provided void displayRotating(int degree);
 provided void displayVent(VentLevel level);
 provided void displayLight(LightLevel level);
 }

 interface VentControl {
 provided void switchOn();
 provided void switchOff();
 provided void setLevel(VentLevel level);
 provided VentLevel getLevel();
 }
 // the same about LightControl
}

The nested interface Table and Display contain expected
method declarations. These methods aim at binding the
new configuration to the existent table control of the MR
system.
class TableControl_NewImpl provides TableControl
{
 final this.Display display = new this.Display();

 Display getDisplay() { return this.display; }

 … // the same about getVent and getLight

 class Table
 {
 …
 int rotate(int degree) {
 …; // rotate physical table
 this.getDisplay().
 displayRotating(degree);

 this.getVentControl().switchOn();
 if(degree>…) this.getVent().setLevel(…);

 // the same about Light

 4

 }
 } // end class

 …// Display, Vent and Light
}

The implementation of TableControl provides an
implementation of the nested interfaces. The sketched code
also illustrates the collaboration between the nested
interface implementations of the ACI and how they use
their extra functionality. For instance Table.rotate
interacts with the new display and the new vent/light
control.

Furthermore note the exploitation of family polymorphism.
A rotating table can only be created by using an instance of
TableControl_NewImpl. This table implementation only
cooperates with display, Vent, light instances of the same
ACI by specifying their types in the context of a
TableControl_NewImpl instance only. (By the way these
instances have to be singletons indicated by the usage of
final field members). The binding of this implementation to
the existent system looks like the following:
class TableControl_NewConfig binds TableControl
{
 class Table binds TableCotnrol.Table
 wraps MrSystem.Table
 {
 private final MrSytem.Table table;
 …
 int moveX(int xPos) {
 // implicit call of Display.displayX
 this.table.moveX(xPos);

 this.getVent().switchOn();
 if(xPos>…) this.getVent().setLevel(…);

 … // the same about Light
 }
 } // end class

 … // binding of Table

 … // classes Vent and Light need no binding
}

The binding has to address the collaboration with the initial
Table and Display classes. In contrast the purpose of
expected methods being called within the implementation
of the corresponding ACI we use the expected methods to
extend the implementation of their counterparts within the
initial Table and Display methods. The necessity of this
unusual step stems from the fact that the MrSystem.moveX
and MrSystem.moveY have to be kept in order to keep their
client code untouched. Hence their implementations have to
interact with the new Vent and Light classes.

4 PRODUCT LINES
The last section presumed an existent system of a certain
base configuration. But designing software of product lines
has to take this base configuration into account from the
very beginning.

The first step in developing the table control software for
different variants could be to analyze commonalities of all
combinations and their variation points. For instance the
commonality of all table control system family could be a
non-rotating table and its corresponding display. Mapping
the results of such an analysis to CAESAR could mean to
modularize the common part of any combination into a
base ACI (plus an implementation) and capturing the
variable configurations into different derived ACIs (whose
implementations can be derived from the implementation
of the base ACI implementation).

This procedure preserves all the advantages that lead to the
selection of CAESAR in order to find a solution approach.
But it has some negative implications. Since the table
control system family represents only a small portion of the
system software and the underlying hardware making up a
magnetic resonance machine we have to consider other
hardware control collaborations as well. An MR
measurement implies its own hardware parts being specific
to measurements (e.g. coils). Besides the measurement
procedure also interacts with the table control because a
measurement implies moving the table into certain
positions. In addition, combinations of measurement
control and table control configurations can also be
separated into recommended, possible and forbidden
categories.

The first thought how to deal with the combinations of a
measurement and table control in CAESAR is to combine
the base configurations of table and measurement control
into an ACI of its own (let us call it Measurement-
TableControl). Note that the base configuration of table is
an ACI itself. The same holds true about the measurement
control configuration. Each variable configuration of
measurement and table control have to be captured within
an own ACI derived from MeasurementTableControl.

Taking this step further results in a product line tree of
derived and nested ACIs with varying hardware control
ACIs as leafs. Thus, selecting and assembling a complete
magnetic resonance machine means to select a sub-tree
containing a leaf for each hardware control family. The
drawback about this idea is the combinatorial explosion of
ACIs (and their implementations) when composing the
software of a magnetic resonance machine. Each ACI
combination needs a special binding. The exclusion of
forbidden combinations reduces the number of necessary
bindings only slightly.

REFERENCES
[1] M. Mezini, K. Ostermann. Integrating independent components with
on-demand remodularization. In Proceedings of the 17th ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2002

[2] M. Mezini, K. Ostermann. Conquering Aspects with Caesar. In
Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development, pages 90-100, 20

