
Programming Language
Support for Relevance

Erik Ernst
Aarhus University, Denmark

WGLD @ Aarhus, 2013

A Conceptual
Discussion

• This talk does not present technical results

• Goal: Raising issues at the conceptual level,
motivating perspectives, irresponsibly
asking for novel semantics

Outline

• Relevance and context

• Context in programming

• Metric spaces delivering context

• Negotiation

Relevance

• Relevance provides complexity reduction:
Consider only the relevant phenomena

• We typically ignore it: Pervades everything

• Starting point: The notion of context

Context

• Means environment, surroundings,
situation, circumstances, setting — the basis
for local interpretation and behavior

• Has been around for billions of years,
played a crucial role for all living things

• Makes sense for us!

A built-in feature

• Incomplete knowledge, ambiguity calls for
local interpretation: Need context

• Rich representation in animals, including
sensory input, hormonal state, memory,
experience, communication from others ..

• Used constantly, unconsciously, diversely,
subtly or abruptly ..

Language and Context

• Because context is crucial, it emerges in
natural language

• More fundamental: Pre-linguistic context
dependencies shine through

• Derived, inevitably: Linguistic context
works as semantic context as well

• .. incurably intertwined, of course

Syntactic Context

• Compare ‘time flies like an arrow’ and ‘fruit
flies like a banana’*

• Several words totally reinterpreted (verb/
noun/preposition), accidental sharing in
sound and spelling, different parsing, ...

• Not our topic: too many
accidental elements

* Not Groucho Marx – see http://en.wikipedia.org/wiki/Time_flies_like_an_arrow;_fruit_flies_like_a_banana

Semantic Context

• Compare

‘There was a humongous dog in the book,

and the little girl chuckled every time she

saw it.’

• This is more manageable

Semantic Context

• Compare

‘There was a humongous dog in the book,

and the little girl chuckled every time she

saw it.’

• This is more manageable

room,

reddish-brown stains on the floor

reminded me of the terrible sounds I had

heard the previous evening.’

Context in
Programming

• Traditionally, we think lexical scoping, and
maybe inheritance, modules, namespaces

• Almost entirely static

• The dynamic context (object graph)
resembles the semantic context

• In general, alignment is a deep
challenge!

Context in
Programming

• Very important case: Transient
phenomena, e.g., behaviors, are highly
context sensitive, and languages exploit it

• Object-orientation has the context relation
method-in-object at its very core

• Class-in-object enables relative transience
(e.g., a Ticket may be inside a specific Flight)

Context in
Programming

• How about the dynamics, the object graph?

• Computation touches a few objects at a
time: There is a focus area

• Context: reachable objects; objects that can
reach “me”, too! No clear boundary!

• Developments in the context are
discovered on-demand, not “sensed”

Metric Spaces

• Life generally occurs
in metric spaces

• The mind cannot grasp the entire world at
once—and need not

• Immense complexity reduction: Near has
full detail, Remote increasingly less

• Works because the world is largely static

Metric Spaces =
Relevance

• Metric spaces are organized from “here”
and out

• Really good heuristic: Near is Relevant,
increasingly remote is increasingly
Irrelevant

• Aligning information and importance

• Counter-example Supernova? .. rare

Metric Spaces =
Relevance

• Metric spaces are organized from “here”
and out

• Really good heuristic: Near is Relevant,
increasingly remote is increasingly
Irrelevant

• Aligning information and importance

• Counter-example Supernova? .. rare

Understanding the
Metric World

• We build understanding on a constantly
updated model, where glimpses of
information is all we get for updates

• Sensory input is interpreted in the model
and used to update the model

• We constantly move, shifting locus and
hence gradually changing Near/Remote

Metricity in
Programming Languages
• Dynamic metricity is tolerable (pointer

hops? - and back?!)

• Static metricity is rudimentary (not fading)

• The “world” may not be largely static

• Moving dynamically sort of works, moving
statically is traditionally unsupported

Supporting Metricity

• How do we enforce a consistent geometry?

• .. short pointers and long pointers? .. bi-
directional? .. enforcing triangle inequality?

• .. protect against surprises “from far away”?

• .. could require name lookups to be at most
so-and-so remote, or showing remoteness?

Multiple Simultaneous
Contexts

• Easy to envision: Physical context, social
network context, online shopping context,
etc. It’s not about composite contexts.

• This aggravates the danger of conflicts and
ambiguities

• My take on this: Avoid it, sequentialize.
Don’t we always?

Conflict Management

• Multiple contexts is an obvious case for
creating conflicts, but not the only one

• Switch of context in real life is often
uncoordinated with other activities:

• On the phone, walk out, drive, ...

• In general, this is hard! E.g., switching
behaviors on the stack, respecting invariants

Main Points

• Relevance arises automatically with a
context organized as a metric space

• This is extremely old, hence natural!

• Programming languages:

• Inflexible “on/off” support statically

• Inconsistent support dynamically

• We need more support for relevance!

