
Semantics of Inheritance,
revisited -- Gracefully

Kim Bruce
Pomona Co!ege

Background

• Live in two worlds:
Teaching novices Research in PL’s

• Meld in designing Grace.

My Teaching Approach

• Start with objects -- concrete

• When want more than one, create a class

• Inheritance (from library classes) used early by students.

- They design classes to inherit from much later.

• Like ideas in Scala, but consider it too complex for
novices (and some parts too complex for me!)

Design Principles

• Steele’s OOPSLA keynote on language design

- Not too big, not too small

• Clean concepts more important than encoding
everything from very small set of concepts

• In teaching:

- Hide complexity until students can handle.

- Use libraries to make programming more interesting.

Modeling Objects

• Semantics specified by Cook & Palsberg, as well as
Cardelli, Kamin, and Reddy

• Cook et al provided typed model of objects and
inheritance, while Bruce/Pierce & Turner provided
different extensions supporting instance variables.

• Has anyone discussed the semantics of constructors?

Modeling Objects

• Objects consist of (shared) methods plus instance
variables. Intuitively:

Obj = IV × (IV ! Meth)

• Doesn’t preserve subtypes under inheritance.
Suppose IV’ <: IV:

IV’ × (IV’ ! Meth) <: IV × (IV ! Meth)

• Solve with existential types

/

Modeling

• Type of objects: μMT. ∃Y. Y × (Y ! Meth(MT))
where

- Y is type of record of instance variables

- Meth is type of method suite

• If obj is an object, then obj.m(x) becomes:

open obj as <Rep, <iv, meth>>
 in meth(iv).m(x)

Existentials for Information
Hiding

• Advantage of using existentials for OO programs is
can interchangeably use objects with same type but
different representations.

- Type only depends on method signatures

- Ex.: Can mix cartesian and polar points in program.

Object Creation w/Classes

• Classes represent extensible object factories.

- But not types!!!

- class C.new(...) -> CType {
 def statVal : Tp1= ...
 var x: Tp2 := ...
 method m(...)->RT {...}
 doSomething // executable code
}

class D.new(...) -> DType {
 inherits C.new(...)
 ... }

A! types optional

No separate
constructor code

Semantics of classes
class C.new(...) {
 var ivi := vi

 method mj (...){ bodyj(self ...) }
}

Interpreted as pair:
 ({ivi = vi},
 λself. {mj = bodyj(self ...)}

• Create object via fixed point construction where
allocate space for instance vbles & initialize with vi.

• Assumption that instance vbles not refer to self.

Semantics of subclasses
class D.new(...) {
 inherits C.new(...)
 var ivn := vn // new
 method mk (...){ bodyk(self ...) } // new or override
}

Just add or replace instance vbles and methods from
superclass.

My Graphics Library

• Applications need to register as a listener on their
canvas to receive notification of mouse clicks

- canvas.doSetUp(self)

• When code is in abstract superclass, had problems.

- When inherited code executed in constructing subclass,
used superclass self rather than subclass self.

- Had to invoke explicitly in code of subclass

- Clearly wrong!

Real World Object Creation

• What about initialization code?

- What is meaning of self when run super init code?

- In model, replace inst. vble values by init code (which may
call self)

• Need to be able to initialize constants in this code.

- Extract implicit initialization code from class body & then:

• create new object, then run initialization code:
 do superclass initialization (with new self),
 do new subclass initialization.

More Problems

• What about fields whose values are closures?

- Can they reference self?

- If so, what happens when they are inherited?

Object Calculus

• What is inheritance on objects?

- Delegation or prototype

• Currently Grace uses prototypes, but ...

- Can emulate classes with objects

• In reverse, object expression just creation of objects from
anonymous classes.

Objects Emulating Classes

• Factory objects: methods return a new object

• Abadi-Cardelli have slightly more complex model to
emulate classes

• Class object has “new” method plus fields for each
method.

- Fields for methods are closures taking self as parameter

- “new” method sets methods of new object from fields

Objects representing Classes

• def Cclass = object {
 method new(...) {
 object{
 method mi(...) = outer.mi’(self,...) ..
 }
 def mi’ = {sf,... -> bodymi(sf,...)} // no use of self!
}

Subclass

• For D to extend C:

def Dclass = 0bject {
 method new(...) {
 object{
 method mi(...) {outer.mi’(self,...)}
 method n (...) {outer.n’(self,...)} // new method
 }
 def mi’ = {sf,... -> c.mi’(sf,...)}
 def n’ = {sf,... -> bodyn(sf,...)} // overriding easy too
}

Types not in subtype relation! -- correct!

Object Inheritance in Grace

• An example:
 oc = object {...}
 od = object{ inherits objCreatorExp
 ... }

• When objCreatorExp is executed, what value is used
for self in initialization? (If clone, no self!)

- Should be self of extended object.

Conclusion

• Grace design nearly complete

• Syntax and semantics largely agreed upon

- Some corner cases tricky

• Should we care if more complex concepts
definable in terms of simpler???

Questions?

Bye!

