An Extensible Programming
Language for Verified Systems
Software

Adam Chlipala
MIT CSAIL
WG 2.16 meeting, 2012

The status quo in computer system design

DOM

CPU

Memory

Devices

Nested sandbox architecture

We don't trust applications to
do the right thing, so we
spend lots of hardware &
software resources
monitoring their behavior.

CPU

Memory

Devices

The proof-carrying code approach

Interface
spec

,,,,,,,,

()
l',,
............

]
llllllllllllll
m

Interface | |
spec

Coq proof
checker

4
o
\)
\\

Operational semantics

Step 1

What is the programming language underneath all this?
How do we formalize its semantics and convince ourselves we got it right?
What sorts of proof techniques and formal verification tools apply?

Too high-level!

Too low-level!

Coq proof
checker

‘\‘
\“‘
K

Operational semantics

int *p = NULL;

>

Undefined
behavior!

(nowhere)

int a[] = {1, 2, 3}
Undefined
behavior!

struct sl { int a, b, c; };
struct s2 { int a, b; };

int foo(struct sl *pl) {
struct s2 *p2 = (struct s2 *) pl;
return p2->a\l+ p2->b;

Undefined behavior?

C standard memory model: complex semantics of objects

Plus a set of carefully chosen rules about when pointers
within an object may be considered to denote other objects

Alternative model: memory as an array of bytes

Cross-platform, lowest-common-denominator
assembly language

C was designed in an era when it wasn't
reasonable to target only platforms with
memories as arrays of 8-bit bytes, but, today,
there is enough uniformity that it makes sense
to reap the benefits of a simpler semantics.

What about different byte orderings?

encode(w) =
decode(bl, b2, b3, b3) = ...

What about the interface of malloc() & co?

The C way:

When the language semantics makes memory an array of bytes, all this
reasoning can be encapsulated portably in a well-specific library.

10

What about local variables & calling conventions?

Why not implement these at the library level, too?

Saves us some headaches specifying:
» Context management for process & thread schedulers
* Methods for garbage collectors to introspect call stack

11

The Bedrock IL . YR T 9
W ::= (* width-32 bitvectors *) U(QA V ‘/‘l\

L ::= (* program code block labels *)

Reg:=Sp|Rp|Rv

Loc ::=Reg | W | Reg +W
Lvalue ::= Reg | Loc
Rvalue ::= Lvalue | W | L
Binop::=+|-|*
Test:==|l=|<| <=

Instr ::= Lvalue := Rvalue | Lvalue := Rvalue Binop Rvalue
Jump ::= goto Rvalue | if Rvalue Test Rvalue then goto L else goto L

Block ::= L: Instr*; Jump
Module ::= Block*

12

Too high-level!

Complex semantics,
with special case rules for many situations,
but still not enough for modern PL implementation.

C?

Poor support for metaprogramming:
we want good hygiene for macros,
and the possibility for macros to do complex compilation

Examples: Yacc and SQL via integrated use of 3
macros, rather than ad-hoc external tools

Too low-level!

C-like programming notation

‘ ' v
Expressive macro system

4 YY1 “ "4
U:W\IVL\ with verification support

Lowest-common-denominator, cross-platform “assembly language”

14

Bedrock version of linked-list length

Definition lengthS : spec := SPEC("xX") reserving 1

Al 1s,

PRE[V] sll 1ls (V "x")

POST[R] [| R = length 1ls |] * sll 1s (V "x").
¥——Specifications via functional programmin

bfunction "length"("x", "n") [lengthS]
"n" <- 0;;
[Al 1s,
PRE[V] sll 1s (V Ignore for a moment.... Loop
POST[R] [| R =V "n" "+ length 1s |] * sll 1ls (V "x")] Invariant
While ("x" <> 0) { C-style
syntax

nnn < = nnn + 1;;
IIXII <= IIXII + 4;;
"X" =%k "X"

This is all Coqg code!
(so please excuse the slightly grungy

s s concrete syntax)
Return "n"
end. J

Theorem sllMOk : moduleOk sllM.
vcgen; abstract (sep hints; finish).

Qed.
o 15

Mostly automated proofs

Challenge #1: Design a concept of
macros that makes it possible to
build up all the usual constructs of C
and more, from first principles.

16

Anatomy of a macro

A macro appends to an array of program basic blocks.

Side Effect

Write some new blocks
to end of program

Input Output

Exit label Entry label
(jump here (jump here to
when done) begin)

Built from combinators
in a functional
language

All the usual notations of C can be bui
In a way that hides macro implementat

17

Anatomy of a macro

T

Side Effect

Write one trivial block.

Output
Input
Exit label Entry label
(jump here (jump here to
when done)

begin)

?

Combinator Parameter:
One IL instruction (not a jump)

18

Anatomy of a macro

Side Effect

Write test block and
“Then”/"Else” blocks.

Input

Exit label
(jump here
when done)

bt

Output

Entry label
(Jump here to]
begin)

?

k Test expression “Then” stmt “Else” stmt

///

j 19

Challenge #2: Allow formal
verification of macro-using programs,
In a way that allows reasoning
about macros independently of
their implementations.

20

Anatomy of a macro

Macro use is only valid
if this condition holds.

Side Effect

Write some new blocks
to end of program

<)
Generate
verification
condition

Input put
Exit label Entry label
(jump here (jump here to
when done) begin)

Postcondition

Macro is not just a compiler, but

i 21
also a predicate transformer.

Example: Straightline code

Instruction: /

Precondition: PRE

Postcondition: As. Js'. PRE(s') A eval(s', /, S)
Verification conflition: ‘v’s. PRE(s) f 3s'. eval(s, i, s')

N 16oT @ aﬂb lomuihsr Bedrock IL.
Conditions are preglcateﬂ%unctl ons) over machine states.

22

The boring part
Notations in Coq do what C macros do

Notation "[p] 'While' ¢ { b }" :=
(While (INV p) c b)
(no associativity, at level 95, c¢c at level 0)
SP_scope.

23

Pattern matching for network protocols

"pos" <- 0;;
Match "req" Size "len" Position
Case (0 ++ "x")
Return "x"
end; ;
Case (1 ++ "x" ++ "y")
Return "x" + "y"
end
} Default {
Fail

n pos n

{

24

Declarative guerying of arrays

"acc" <- 0;

we

[After prefix Approaching all
PRE[V] [| V "acc" = countNonzero prefix |]
POST[R] [| R = countNonzero all |]]

For "index" Holding "value" in "arr" Size "len"
Where (Value <> Ok}{
"acc" <- "acc" + 1

bi D

Return "acc"

Loop has filter
condition that the
macro analyzes

syntactically to decide
on optimizations.

25

bfunction "main"("cmd", "cmdLen", "data", "datalLen", "output", "position", "posn"
"lower", "upper", "index", "value", "res", "node")
"output" <- 0;;
"position" <- 0;;
While ("position" < "cmdLen") {
Match "cmd" Size "cmdLen" Position "position" {

Parse byte =P Case (0 ++ "posn" ++ "lower")

"reg" <- 0;;

SequenceS Wlth a For "index" Holding "value" in "data" Size "dataLen"
high_|eve| pattern Where ((Index = "posn") && (Value >= "lower")) {

. n n — 1
notation S

"node" <-- Call "malloc"!"malloc" (0);;

"node" *<- "res";; "node" + 4 *<- "output";; "output" <- "node"
end;;
Case (1 ++ "lower" ++ "upper")

"res" <- 0;;

For |00p with _»For "index" Holding "value" in "data" Size "dataLen"

Where (("lower" <= Value) && (Value <= "upper") && (Value >= "res")) {

“Where” condition; "res" <- "value"

i I i

Implementatlor.]. "node" <-- Call "malloc"!"malloc" (0);;

ana|yzeS COndlthn "node" *<- "res";; "node" + 4 *<- "output";; "output" <- "node"

to deduce that some end;;

. . Case (2 ++ "lower" ++ "upper")
IOOp Iterations may For "index" Holding "value" in "data" Size "dataLen"
be Sk|pped Where ((Index >= "lower") && (Value <= "upper")) {
"node" <-- Call "malloc"!"malloc" (0);;
"node" *<- "value";; "node" + 4 *<- "output";; "output" <- "node"

engl
} ?ji‘“lt { Not shown here: About 400 more
} lines to state & prove the
i output- correctness theorem

end

14

26

Running time (s) of 4 implementations of that program

1.2

—

0.8

0.6
0.4
0. - -

OCaml (10) OCaml (HO) Bedrock

N

o

(For a random workload of 200 gueries to a database of 100,000 values)

27

Bedrock on the web

http://plv.csail.mit.edu/bedrock/

28

Backup

29

Example: If.. Then..Else

Test expression: e
Then statement: THEN
Else statement: ELSE
Precondition: PRE

Postcondition: As. Post(THEN)(As'. PRE(s') A eval(s', e, 1))(s)
VvV Post(ELSE)(AS'. PRE(sS') A eval(s', e, 0))(s)

Verification condition: (Vs. PRE(s) = 3b. eval(s, e, b))
AN VC(THEN)(AS'. PRE(S') A eval(s', e, 1))
A VC(ELSE)(AS'. PRE(s') A eval(s', e, 0))

30

Example: While

Test expression: e
Loop body statement. BODY
Loop invariant: INV
Precondition: PRE
Postcondition: As. INV(s) A eval(s, e, 0)
Verification condition: (Vs. INV(s) = db. eval(s, e, b))
A (Vs. PRE(s) = INV(S))
A (Vs. Post(BODY)(As'. INV(S') A eval(s', e, 1))(s) = INV(S))

31

Each macro Is packaged with its
proof of correctness, so
programmers can use & reason
about macros independently of their
Internals.

Once verification conditions are
proved, the final theorem is
foundational, independent of the
macro approach.

32

- 1

JJ(\:‘«\/\/L\

3 \,\’;\

/

\

Program with
annotations

(function specs,
loop invariants,

etc.)

\

/

VC Gen.

p

AV

Verification
conditions (no

loops)

explicit mention of

4

.as a highly automated verification environment.

— a N
Definitions of data Program-
e Srtensj(e:m;?ion + independent hints
prese about predicates
predicates 9)

)

Automated separation logic prover

Proof obligations in normal mathematical theories
(e.g., numbers, lists, sets, bags, ...)

Discharge with tactic-based scripts,

SMT solvers, etc. 33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

