Combining Static and
Dynamic lypes

nald Garcia

)ik] B3 e X TF
. '.“.' s.'." R ol i '.,. A k1

Ro

Friday, December 7, 2012

Gradual Typing

Dynamic Typing: Static Typing:
i AR O - (Robustness)

- ..d.~

Friday, December 7, 2012

Gradual Typing

Dynamic Typing:
(Agility)

&
») \

(Robustness)

I
. e e - o g 4l . L e
-" “J)I 3 Z*(" . :...- '.". - ‘ b 3 ‘." s VR rin S ey ¢ o
- . ' . S el - . 3 2T YO 4
- - SOAT =) - g ok - e)

i . 2
e y - L Ao

Friday, December 7, 2012

Gradual Typing

move(x, dx) {
return x + dx;

Friday, December 7, 2012

Gradual Typing

move(int x, dx) {
return x + dx;

; b)) k . LN i :
o .',' T ELTE TR -/,J‘;\:, Al ng & o
. - hal ¥ e ?l- w¥yy L N e ‘ » .-’.. L]] ¢

Friday, December 7, 2012

Gradual Typing

int move(int x, dx) {
return x + dx;

Friday, December 7, 2012

Gradual Typing

int move(int x, int dx) {
return x + dx;

Friday, December 7, 2012

Gradual Typing

if (SomethingTrue()) {
e =l ()
'} else {

g ") e) T ey Al o
& S g s o IO o APt S Pa e v
: 'y - P e BT KR -
v - r o N
C-. g

Friday, December 7, 2012

From GT to Casts

Gradual Cast
Language Language

Friday, December 7, 2012

Gradual Cast

Type Chec/
Language Language

Friday, December 7, 2012

Cast-based Languages

Dyn

° type of dynamlc values _

<T<:S>

E T
"l'. Ly - vy

. - v
i .

First-Order Casts

(Int <= Dyn)(Dyn < Int)4 ——" 4

Bool <= Dyn)(Dyn < Int)4 —" error

Higher-Order Casts

(Int— Int < Int — Dyn) f

(Ag. g 1) ({Int— Int <= Int — Dyn)f)
((Int— Int <= Int— Dyn)f) 1
(Int <= Dyn)(f (Int < Int)1)
(Int <= Dyn)(f 1)

Friday, December 7, 2012

Design Space of Casts

® [wo Axes of Design Space

® How eagerly should we detect errors

4 at
y N = ¥
Feore he PRER S 0 e A X O AR o S
| - m - < - m -

v
e b \

Friday, December 7, 2012

How Eagerly?

(Bool — Int <= Dyn)
(Dyn <= Int — Int)(Ax : Int. x)

Who'’s to Blame?

((Dyn — Int <= Dyn)®
(Dyn < Bool — Bool)!2\z : Bool. x)
(Dyn < Int)"11

(Dyn — Int < Dyn)’
(Dyn < Bool — Bool)!2 Az : Bool. x —
(Dyn — Int < Bool — Bool)!3)z : Bool. x

Friday, December 7, 2012

(Dyn — Int < Dyn)’

(Dyn < Bool — Bool)!2\x : Bool. x —
(Dyn — Int <= Dyn — Dyn)’

(Dyn — Dyn <= Bool — Bool)2\z : Bool. x

Friday, December 7, 2012

Who'’s to Blame?

Theorem (Blame Safety)

Let e be a well-typed term with subterm (T < S)'¢’
containing the only occurrences of label | in e.
IfS <: T then e /—* blame /.

Friday, December 7, 2012

Who'’s to Blame?

Theorem (Blame Safety)

Let e be a well-typed term with subterm (T < S)'¢’
containing the only occurrences of label | in e.
IfS <: T then e /—* blame /.

i

[)
" A
| -~ @ Jells us which casts cannot b ARE Gl Lokl
- e ' e N - ‘ . % SRR~ s ¥ P . 8 ety o 40} L = 3 AR R - - -. =) - E : OCYST ST A .-;. s B
SRR s S AR e L R T st £ S S A0 faties - D 0 TR A [SR e SRR DLt B S Gl

Friday, December 7, 2012

Design Space

Friday, December 7, 2012

Recent Developments

® High-Level Semantics for Casts'

® D semantics subsume UD semantics.

A e mhe

® Fager D and UD semantics are subtle.

=y £ = s M
s AN - .))
- a‘;.k___“r L R A S R v T
-y . 4 'SR LI T . - * .

- §
= e N)

Friday, December 7, 2012

Desirable Properties

® Reasonable Performance

® Error Detection

T I p FPSNEY g 3 3 P . W - .
Gl 2ha Tt » sy e ".._‘.'.. Sect SR = .
£ = 4 103 oot L h 2 :
Trel o : STy i a7 4 [2 i, Rt
¥ 4 - y, o~ 1 3

Friday, December 7, 2012

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

RoBiN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

Friday, December 7, 2012

1. INTRODUCTION

‘The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programmuing; unfortunately one often pays a price for it in the time taken

to find rather inscrutable bugs—anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible—in that it required procedure
parameters to be specified only as “procedure’ (rather than say ““integer to real procedure’)
—but the flexibility was not uniform, and not sufhcient.

Friday, December 7, 2012

1. INTRODUCTION

‘The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programmuing; unfortunately one often pays a price for it in the time taken

to find rather inscrutable bugs—anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible—in that it required procedure
parameters to be specified only as “procedure’ (rather than say ““integer to real procedure’)
—but the flexibility was not uniform, and not sufhcient.

Friday, December 7, 2012

1. INTRODUCTION

‘The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programmuing; unfortunately one often pays a price for it in the time taken

to find rather inscrutable bugs—anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible—in that it required procedure
parameters to be specified only as “procedure’ (rather than say ““integer to real procedure’)
—but the flexibility was not uniform, and not sufhcient.

Friday, December 7, 2012

Dynamic Typing: Static Typing:
flobustess)

L) ot G IRE o

» 5
»

[] []
(Agility)

’
ar I g ")
4 L
b s b,y Cl
s

v

Y

Friday, December 7, 2012

Dynamic Typing: Static Typing:

(Robustness)

= .Oc.l_." ,..‘. : B " N "

< >

Friday, December 7, 2012

