
Combining Static and
Dynamic Types

Ronald Garcia

Friday, December 7, 2012

Gradual Typing

2

Dynamic Typing:
 (Agility)

Static Typing:
 (Robustness)

Siek and Taha 2006,2007

Friday, December 7, 2012

Gradual Typing

3

Dynamic Typing:
 (Agility)

Static Typing:
 (Robustness)

Siek and Taha 2006,2007

Friday, December 7, 2012

Gradual Typing

4

move(x, dx) {
 return x + dx;
}

p = 0;
a = 1;
x2 = move(p,a);

Friday, December 7, 2012

Gradual Typing

5

move(int x, dx) {
 return x + dx;
}

int p = 0;
a = 1;
x2 = move(p,a);

Friday, December 7, 2012

Gradual Typing

6

int move(int x, dx) {
 return x + dx;
}

int p = 0;
a = 1;
int x2 = move(p,a);

Friday, December 7, 2012

Gradual Typing

7

int move(int x, int dx) {
 return x + dx;
}

int p = 0;
int a = 1;
int x2 = move(p,a);

Friday, December 7, 2012

Gradual Typing

8

if (SomethingTrue()) {
 x = 7.0
} else {
 x = “Good Grief!”
}
y = sqrt(x)

Friday, December 7, 2012

From GT to Casts

Gradual
Language

Cast
Language

Type Check

Friday, December 7, 2012

Gradual
Language

Cast
Language

Type Check

Friday, December 7, 2012

Cast-based Languages

• type of dynamic values

• Expression to cast S values to T values

Background: Cast Calculi

Simply-typed lambda calculus
+ Dyn
+ �T ⇐ S�e

Γ � e : S S ∼ T
Γ � �T ⇐ S�e : T

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 4

Background: Cast Calculi

Simply-typed lambda calculus
+ Dyn
+ �T ⇐ S�e

Γ � e : S S ∼ T
Γ � �T ⇐ S�e : T

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 4

Friday, December 7, 2012

Background: First-Order Casts

• First-order casts operate on base types.

• It is straightforward to check whether a value is

consistent with a base type.

�Int ⇐ Dyn��Dyn ⇐ Int �4 �−→∗
4

�Bool ⇐ Dyn��Dyn ⇐ Int �4 �−→∗ error

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 5

First-Order Casts

Friday, December 7, 2012

Higher-Order Casts

Background: Higher-Order Casts
• Higher-Order casts operate on function types.
• Problem: one can’t immediately check whether f is

consistent with the target type Int → Int .

f : Int → Dyn
f ≡ (λx : Int . if 0 < x then �Dyn ⇐ Bool�True

else �Dyn ⇐ Int �2)

. . . �Int → Int ⇐ Int → Dyn� f . . .

• Solution: delay checking and perform blame tracking
(Findler and Felleisen 2002, Wadler and Findler 2007
& 2009).

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 6

Background: Delayed Checking

Higher-order casts are checked when the function is

applied.

f ≡ (λx : Int . if 0 < x then �Dyn ⇐ Bool�True
else �Dyn ⇐ Int �2)

(λg . g 1) (�Int → Int ⇐ Int →Dyn�f)
�−→ (�Int → Int ⇐ Int →Dyn�f) 1

�−→ �Int ⇐ Dyn�(f �Int ⇐ Int �1)
�−→ �Int ⇐ Dyn�(f 1)

�−→∗ �Int ⇐ Dyn��Dyn ⇐ Bool�True

�−→ error

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 11

Findler and Felleisen, 2002
Friday, December 7, 2012

Design Space of Casts

• Two Axes of Design Space

• How eagerly should we detect errors

• Which expressions deserve attention

• Low-level implementation semantics

Siek, Garcia, and Taha, ESOP 2009

Friday, December 7, 2012

How Eagerly?

• Lazy Semantics accept this expression

• Eager Semantics reports a cast error.

�Bool → Int ⇐ Dyn�
�Dyn ⇐ Int → Int�(λx : Int. x)

Friday, December 7, 2012

Who’s to Blame?

• UD Strategy blames the context around the
cast with label l2

• D Strategy blames the cast with label l3

(�Dyn → Int ⇐ Dyn�l3
�Dyn ⇐ Bool → Bool�l2λx : Bool. x)

�Dyn ⇐ Int�l11

Friday, December 7, 2012

• D strategy: casts to and from Dyn are
explicitly type-tagged operations

�Dyn → Int ⇐ Dyn�l3
�Dyn ⇐ Bool → Bool�l2λx : Bool. x �−→

�Dyn → Int ⇐ Bool → Bool�l3λx : Bool. x

Friday, December 7, 2012

• UD strategy: casts to and from Dyn are
encoded as recursive types

�Dyn → Int ⇐ Dyn�l3
�Dyn ⇐ Bool → Bool�l2λx : Bool. x �−→

�Dyn → Int ⇐ Dyn → Dyn�l3
�Dyn → Dyn ⇐ Bool → Bool�l2λx : Bool. x

Friday, December 7, 2012

Who’s to Blame?

Subtyping and Blame

Theorem (Blame Safety)
Let e be a well-typed term with subterm �T ⇐ S�l e�

containing the only occurrences of label l in e.
If S <: T then e �−→∗ blame l .

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 27

Friday, December 7, 2012

Who’s to Blame?

• Tells us which casts cannot be blamed

• Doesn’t tell us which casts SHOULD be
blamed.

Subtyping and Blame

Theorem (Blame Safety)
Let e be a well-typed term with subterm �T ⇐ S�l e�

containing the only occurrences of label l in e.
If S <: T then e �−→∗ blame l .

Jeremy Siek, Ronald Garcia, Walid Taha Higher-Order Casts 27

Friday, December 7, 2012

Design Space

Lazy UD Lazy D

Eager UD Eager D

*

* Wadler and Findler 2009

Friday, December 7, 2012

Recent Developments

• High-Level Semantics for Casts

• D semantics subsume UD semantics.

• Eager D and UD semantics are subtle.

• Implementation Strategy

• Threesomes for the full design space

*Joint work with Jeremy Siek

*

Friday, December 7, 2012

Desirable Properties

• Reasonable Performance

• Error Detection

• Error Reporting

• Full Language

Friday, December 7, 2012

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Friday, December 7, 2012

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Friday, December 7, 2012

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Friday, December 7, 2012

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Friday, December 7, 2012

Dynamic Typing:
 (Agility)

Static Typing:
 (Robustness)

Friday, December 7, 2012

Dynamic Typing:
 (Agility)

Static Typing:
 (Robustness)

✓

???

Friday, December 7, 2012

