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Gradual Typing

Dynamic Typing: Static Typing:
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Gradual Typing

Dynamic Typing:
(Agility)
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Gradual Typing

move(x, dx) {
return x + dx;
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Gradual Typing

move(int x, dx) {
return x + dx;
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Gradual Typing

int move(int x, dx) {
return x + dx;
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Gradual Typing

int move(int x, int dx) {
return x + dx;
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Gradual Typing

if (SomethingTrue()) {
e =l ()
'} else {
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From GT to Casts

Gradual Cast
Language Language
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Gradual Cast

Type Chec/
Language Language
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Cast-based Languages

Dyn
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First-Order Casts

(Int <= Dyn)(Dyn < Int)4 ——" 4

Bool <= Dyn)(Dyn < Int)4 —" error




Higher-Order Casts

(Int— Int < Int — Dyn) f

(Ag. g 1) ({Int— Int <= Int — Dyn)f)
((Int— Int <= Int— Dyn)f) 1
(Int <= Dyn)(f (Int < Int)1)
(Int <= Dyn)(f 1)
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Design Space of Casts

® [wo Axes of Design Space

® How eagerly should we detect errors
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How Eagerly?

(Bool — Int <= Dyn)
(Dyn <= Int — Int)(Ax : Int. x)




Who'’s to Blame?

((Dyn — Int <= Dyn)®
(Dyn < Bool — Bool)!2\z : Bool. x)
(Dyn < Int)"11




(Dyn — Int < Dyn)’
(Dyn < Bool — Bool)!2 Az : Bool. x —
(Dyn — Int < Bool — Bool)!3 )z : Bool. x
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(Dyn — Int < Dyn)’

(Dyn < Bool — Bool)!2\x : Bool. x —
(Dyn — Int <= Dyn — Dyn)’

(Dyn — Dyn <= Bool — Bool)2\z : Bool. x
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Who'’s to Blame?

Theorem (Blame Safety)

Let e be a well-typed term with subterm (T < S)'¢’
containing the only occurrences of label | in e.
IfS <: T then e /—* blame /.
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Design Space
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Recent Developments

® High-Level Semantics for Casts'

® D semantics subsume UD semantics.

A e mhe

® Fager D and UD semantics are subtle.

=y £ = s M
s AN - . ) )
- a‘;.k\___“r L R A S R v T
-y . 4 'SR LI T . - * .

- §
= e N )

Friday, December 7, 2012



Desirable Properties

® Reasonable Performance

® Error Detection
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1. INTRODUCTION

‘The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programmuing; unfortunately one often pays a price for it in the time taken

to find rather inscrutable bugs—anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible—in that it required procedure
parameters to be specified only as “procedure’ (rather than say ““integer to real procedure’)
—but the flexibility was not uniform, and not sufhcient.
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Dynamic Typing: Static Typing:
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Dynamic Typing: Static Typing:

(Robustness)
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