
Permission-Based Programming

in Plaid

IFIP 1.16 Working Group on Language Design

London

March 1, 2012

Types Should Do More

• One of our biggest problems is reasoning about

aliased/concurrent mutable state

– the hard problem in verification

– the hard problem in concurrent programming

– the hard problem in practical system building

• Nevertheless state is too useful to go away• Nevertheless state is too useful to go away

– Otherwise it would have been long gone by now

• Types should tell us what state is mutable and aliased

– Safe, tool-supported reasoning about state updates

– Safe, automatic concurrency

– More productive programming in the large

2

Background: Permissions

• Permission systems associate every reference with both a type
and a permission that restricts aliasing and mutability

var unique InputStream stream = new FileInputStream(…);

• Some permissions and their intuitive semantics [Boyland][Noble][…]

• Type system checks permission consistency

– unique: no other references to the object

– immutable: no-one can modify the object

Permission-Based Programming

Languages

mutable

unique

mutable

shared shared

immut

able

immutable immutable

Permission-Based Language

• A language whose type system, object model, and run-time

are co-designed with permissions in mind

– Contrast: prior permission systems layered static permission checking

onto existing languages

• Prototype example: the Plaid programming language at CMU• Prototype example: the Plaid programming language at CMU

• Potential benefits

– Explicit state change in the object model

– Automatic parallel execution

– Design and encapsulation enforcement

– Compile-time and run-time checking

Permission-Based Programming

Languages
4

Outline

• Plaid language audience and goals

• Explicit state change in the object model

• Automatic parallel execution

• Design principles and lessons learned

Resource-Based Programming in

Plaid
5

Plaid Language Audience and Goals

• Target audience and domain

– Professional programmers

– Applications programming

– Programs in which changing state is important

– Programs for which concurrency is desired

• Goals• Goals

– Explore the consequences of a permission-based programming
language design

– Explore an object model based on changing state

– Explore an implicit concurrency model based on permissions

– Enough realism to do large-scale case studies

• Plaid is already bootstrapped

– As much simplicity as is compatible with the above goals

6

Outline

• Plaid language audience and goals

• Explicit state change in the object model

• Automatic parallel execution

• Design principles and lessons learned

Resource-Based Programming in

Plaid
7

Empirical Studies of Typestate Protocols

• How commonly are protocols defined & used?

– Corpus study on 2 million LOC: Java standard library, open source

[Beckman, Kim, & A, ECOOP 2011]

– 7% of all types define object protocols

• c.f. 2.5% of types define type parameters using Java Generics

– 13% of all classes act as object protocol clients

• Do protocols cause practical development challenges?

– Empirical study of postings on an ASP.NET help forum

– 75% of problems identified involved temporal constraints [Ciera

Jaspan dissertation, 2011]

Plural and Plaid: Protocols in Practice 8

Typestate-Oriented Programming

A new programming paradigm in which:

programs are made up of dynamically created objects,

each object has a typestate that is changeable

and each typestate has an interface, representation, and behavior.

– compare: prior typestate work considered only changing interfaces

[Strom and Yemeni, Deline and Fähndrich][Strom and Yemeni, Deline and Fähndrich]

Typestate-oriented Programming is embodied in the language

Plaid: a Permission-Based

Programming Language
9

*Plaid (rhymes with “dad”) is

a pattern of Scottish origin,

composed of multicolored

crosscutting threads

Historical Perspective

Typestate
[Strom & Yemeni ‘86]

Typestate for Objects
[Deline & Fähndrich ‘04]

Linear Logic

[Girard ‘87]

Linear Types for GC
[Baker ‘91, Wadler ‘91]

Pemissions, Alias Types

Smalltalk “become”
[Kay et al., 70s] Actors

[Hewitt et al., 73]

Run-time support for

Role/State transitions
[Pernici ‘90, Taivalsaari ‘93]

Plaid: a Permission-Based

Programming Language
10

[90s-00s: Boyland, Morrisett, …]

Plural: Modular Typestate

Specification & Verification

[Bierhoff et al, ‘04-’09]

[Pernici ‘90, Taivalsaari ‘93]

Fickle: types for class change
[Drossopoulou et al. ‘01]

Typestate-Oriented Programming

state File {

val String filename;

}

state ClosedFile = File with {

method void open() [ClosedFile>>OpenFile];

}

State

transition

open closed

close()

read()

open()

}

state OpenFile = File with {

private val CFile fileResource;

method int read();

method void close() [OpenFile>>ClosedFile];

}

Plaid: a Permission-Based

Programming Language
11

Different

representation
New methods

Implementing Typestate Changes

method void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

fileResource = fopen(filename);

}

}

Typestate change

primitive – like

Smalltalk become

Values must be

Plaid: a Permission-Based

Programming Language
12

:

Values must be

specified for

each new field

Why Typestate in the Language?

• The world has state – so should programming languages

– egg -> caterpillar -> butterfly; sleep -> work -> eat -> play; hungry <-> full

• Language influences thought [Sapir ‘29, Whorf ‘56, Boroditsky ’09]

– Language support encourages engineers to think about states

• Better designs, better documentation, more effective reuse

• Improved library specification and verification

– Typestates define when you can call read()

13

– Typestates define when you can call read()

– Make constraints that are only implicit today, explicit

• Expressive modeling

– If a field is not needed, it does not exist

– Methods can be overridden for each state

• Simpler reasoning

– Without state: fileResource non-null if File is open, null if closed

– With state: fileResource always non-null

• But only exists in the FileOpen state
Plaid: a Permission-Based

Programming Language

Checking Typestate

method void openHelper(ClosedFile>>OpenFile aFile) {

aFile.open();

}

method int readFromFile(ClosedFile f) {

openHelper(f);

This method

transitions the

argument from

ClosedFile to

OpenFile

Must leave in

the ClosedFile

state

Use the type of

openHelperopenHelper(f);

val x = computeBase() + f.read();

f.close();

return x;

}

Plaid: a Permission-Based

Programming Language
14

openHelper

f is open so

read is OK

Correct

postcondition; f

is in ClosedFile

Question: How do we

know computeBase

doesn’t affect the file

(thorugh an alias)?

Typestate Permissions
• unique OpenFile

– File is open; no aliases exist

– Default for mutable objects

• immutable OpenFile
– Cannot change the File

• Cannot close it

• Cannot write to it, or change the position

– Aliases may exist but do not matter

– Default for immutable objects

File

ClosedFile OpenFile

NotEOF EOF

[Chan et al. ’98]

pure resource-based

programming

pure functional

programming

– Default for immutable objects

• shared OpenFile@NotEOF [OOPSLA ’07]

– File is aliased

– File is currently not at EOF
• Any function call could change that, due to aliasing

– It is forbidden to close the File
• OpenFile is a guaranteed state that must be respected by all operations through all aliases

• full – like shared but is the exclusive writer

• pure – like shared but cannot write

Plaid: a Permission-Based

Programming Language
15

shared OpenFile@OpenFile

is (almost) traditional object-

oriented programming

Key innovations vs. prior work

(c.f. Fugue, Boyland, Haskell

monads, separation logic, etc.)

Permission Splitting

• Permissions may not be duplicated

– No aliases to a unique object!

• Splitting that follows permission semantics is allowed, however

– unique � full

– unique � shared– unique � shared

– unique � immutable

– shared ���� shared, shared

– immutable ���� immutable, immutable

– X � X, pure // for any non-unique permission X

• How do we get unique back after we give it up? Stay tuned…

Plaid: a Permission-Based

Programming Language
16

Parametric Polymorphism

state Collection {

type TElem;

void add(TElem>>none e);

TElem removeAny();

Type parameter must now

include state and permission

Adding an element to the collection

removes the client’s permission to it

(e.g. to ensure unique objectsTElem removeAny();

}

Plaid: a Permission-Based

Programming Language
17

(e.g. to ensure unique objects

are unaliased)

If we want to get an element,

we must remove it from the

collection (to avoid aliasing).

Example: Interactors

state Idle {

void start() [Idle >> Running];

state MoveIdle extends Idle {

GraphicalObject go;

void start() [Idle >> Running] {

this <- Running {

void run(InputEvent e) {

go.move(e.x,e.y);

RunningIdle

start()

stop()

run()

void start() [Idle >> Running];

}

state Running {

void stop() [Running >> Idle];

void run(InputEvent e);

}

go.move(e.x,e.y);

}

void stop() [Running >> Idle] {

this <- MoveIdle{}

}

}

}

}

Plaid: a Permission-Based

Programming Language
18

Typestate Checking Hypotheses

• Relatively simple permission mechanisms are sufficient to

statically check typestate properties in most Plaid code

– (for the exceptions, see Gradual Types, below)

• Both permissions and typestates express important design

constraints, helping developers correctly evolve softwareconstraints, helping developers correctly evolve software

• Permissions can help make automated verification tools more

effective

Plaid: a Permission-Based

Programming Language
19

Outline

• Plaid language audience and goals

• Explicit state change in the object model

• Automatic parallel execution in *

• Design principles and lessons learned

Resource-Based Programming in

Plaid
20

*The Ӕminium project is a

collaboration between CMU

and the University of

Coimbra, located on the site

of the ancient Roman town

of Ӕminium

: Explicit Dependencies for Concurrency

• Concurrency is a major challenge

– Avoiding race conditions, understanding execution

• Inspiration: functional programming is “naturally concurrent”

– Up to data dependencies in program

• Idea: use permissions to construct dataflow graph

– Easier to track dependencies than all possible concurrent executions

– Functional programming passes data explicitly to show dependencies

– For stateful programs, we pass permissions explicitly instead

• Consequence: stateful programs can be naturally concurrent

– Furthermore, we can provide strong reasoning about correctness

21
Plaid: a Permission-Based

Programming Language

Features: Sharing and Dependencies

method unique Data createData();

method void print(immutable Data d);

method unique Stats getStats(immutable Data d);

method void manipulate(unique Data d,

immutable Stats s);

val d = createData();

createData

split

print getStats

unique

immutable immutable

immutableval d = createData();

print(d);

val s = getStats(d);

manipulate(d, s);

print(d);

22

join

manipulate

print

unique

immutable
immutable

Plaid: a Permission-Based

Programming Language

Features: Sharing and Dependencies

method void produce(‘QG Queue q);

method void consume(‘QG Queue q);

method void dispose(unique Queue q);

group QG;

val QG Queue q = new Queue;

split QG: produce(q) || consume(q);

new QueueQG

adopt

split

uniqueunique

sharedsplit QG: produce(q) || consume(q);

q.dispose();

23

produce consume

join

shared

emancipate

unique

unique

disposePlaid: a Permission-Based

Programming Language

Concurrency by Default Hypotheses

• It is easier for programmers to think correctly about dependencies
rather than multiple threads of control

• Programmers using the Parallel by Default model will expose more
concurrency than is typically exposed in explicit concurrency models

• Making non-deterministic concurrency explicit (with split blocks)
and scoped (to the body of the split block, and to the data whose and scoped (to the body of the split block, and to the data whose
permission is split) helps avoid programmer errors

• can support additional kinds of reasoning about
concurrent programs:
– Consistent synchronization

– Typestate protocol verification

– Synchronization granularity (sufficient to ensure typestate)

Plaid: a Permission-Based

Programming Language
24

Outline

• Plaid language audience and goals

• Explicit state change in the object model

• Automatic parallel execution

• Design principles and lessons learned

• Other topics

– Gradual permissions and typestate– Gradual permissions and typestate

• Status, Demonstrations and Conclusions

Resource-Based Programming in

Plaid
25

Principles and Lessons

• Principles

– Everything should make sense in the dynamic language

• Semantics do not depend on typechecking

• Even permissions asserted in the static code have an interpretation in the

dynamic code (see gradual permissions)

– Document, don’t restrict

• Don’t restrict the language to allow reasoning. Always provide a general • Don’t restrict the language to allow reasoning. Always provide a general

base case.

• Instead, allow programmers to document cases where restrictions are

desired

• Lessons

– Self hosting may not have been a good idea

• Spent considerable time

• The compiler may not be the best example for Plaid

26

Outline

• Plaid language audience and goals

• Explicit state change in the object model

• Automatic parallel execution

• Design principles and lessons learned

• Other topics

– Gradual permissions and typestate [ECOOP ‘11]– Gradual permissions and typestate [ECOOP ‘11]

– Trait composition in Plaid [OOPSLA ‘11]

– Making borrowing more practical [POPL ‘12]

– Novel class/prototype hybrid model [hidden in OOPSLA ‘11]

• Status, Demonstrations and Conclusions

Resource-Based Programming in

Plaid
27

Gradual Permissions and Assertions

• Static typechecking is good, but imperfect

– Sometimes type information is lost and must be recovered

– Type information makes programs more verbose, and must be changed
when the program changes

– Some programmers prefer to work in dynamically typed languages

• Principle: all assertions about typestate and permissions should be
checkable either statically or dynamically

•
checkable either statically or dynamically

• Permission assertions

– Check that a permission is consistent with other current permissions

• Gradual permissions

– Programmer can selectively omit permissions

– Statically checks as much as possible, dynamically check the rest

– Based on gradual types [Siek and Taha ’06]

Plaid: a Permission-Based

Programming Language
28

Assertions

val unique File file = new File;

fileCollection.add(file)

// other code…

fileCollection.removeAll();

assert<unique File> file; // verify there are no aliases

file.close();

!
• The assertion must verify

– For unique, that there are no aliases

– For immutable, that there are no write aliases (i.e. unique or shared)

– For shared, that there are no unique or immutable aliases, and the

asserted state invariant is consistent with other shared invariants

Plaid: a Permission-Based

Programming Language
29

Assertion Checking Strategies

• Infeasible: garbage collect on each cast

• Eager reference counting

– Keep track of how many references exist to each object, and what
permissions they have

– Cast succeeds if no conflict with other references

– Benefits: early warnings about errors, can replace garbage collector– Benefits: early warnings about errors, can replace garbage collector

– Drawback: hard to implement efficiently, especially in concurrent systems

• Lazy verification

– All asserts succeed, but invalidate conflicting references

– Raises a warning of reference with conflicting permission is used

– Benefits: Only raises real errors, efficient to check

– Drawback: raises error much later (in contrast to assertions in C or Java)

Plaid: a Permission-Based

Programming Language
30

Gradual Permissions

method int read(shared File@OpenFile f) { … }

method getResource() { … }

val file = getResource();

// other code…

read(file);

• Can leave types off value and method declarations• Can leave types off value and method declarations

– Equivalently, type dynamic indicates a dynamically typed variable

– Can invoke any method on a dynamic object; runtime system checks if it
exists

• The Plaid compiler automatically inserts checks and casts

– When dynamic values flow to typed variables, as in the call to read()

– When operate (e.g. write) on a dynamic object, ensure no conflicting
permission is asserted (e.g. unique, full, immutable)

Plaid: a Permission-Based

Programming Language
31

Research Hypothesis: Typestate-oriented programming

has benefits even for dynamically-typed code:
• Code matches design better, facilitating evolution

• Typestate defects are caught earlier and more explicitly,

making them easier to isolate and fix

• Permission assertions are useful in their own right, e.g.

immutable or exclusive writer

Outline

• Plaid language audience and goals

• Explicit state change in the object model

• Automatic parallel execution

• Design principles and lessons learned

• Other topics

– Gradual permissions and typestate– Gradual permissions and typestate

• Status, Demonstrations and Conclusions

Resource-Based Programming in

Plaid
32

Plaid Status

• Theoretical models and soundness results

– PlaidCore – structural core of Plaid permissions system

– Gradual Featherweight Typestate – runtime typestate & permissions

– µAeminium – absence of race conditions

• Implementation

– Prototype compiler

• bootstrapped in Java; reimplementation in Plaid nearly complete• bootstrapped in Java; reimplementation in Plaid nearly complete

– Typechecker for unique and immutable permissions

– Ӕminium runtime supports a speedup on simple examples

• Prior research

– Plural: permissions system, typestate checking for Java

– Sync or Swim: typestate checking in a concurrent setting

– Case studies: demonstrate practicality of permission/typestate system
on ~50,000 lines of code

Plaid: a Permission-Based

Programming Language
33

Demonstration

• Fun example: Turing machine

– State-based computation model!

• Uses of states

– State of the Turing machine controller

– State of each cell on the tape

method writeOne() { this <- One }

– Representing infinite tapes: LeftEnd, RightEnd, InnerCell– Representing infinite tapes: LeftEnd, RightEnd, InnerCell

– GUI states: unchecked in Swing!

• Empty, Hidden, Visible windows

• Initialization state

• Size set

• Parent set

• File example (open/closed)

Plaid: a Permission-Based

Programming Language
34

Demonstration (2)

Game of Life in Plaid on the web:

http://www.cs.cmu.edu/~aldrich/plaid/life/

States are used to represent the current state of a cell

(alive/dead) and the cell’s situation (crowded, lonely, etc.)(alive/dead) and the cell’s situation (crowded, lonely, etc.)

Code:

http://www.cs.cmu.edu/~aldrich/plaid/life/GameOfLife.zip

35

Try Plaid!

Plaid: a Permission-Based

Programming Language
36

Other Features: Plaid Object Model

• Pure object-oriented model

– Everything is an object

– Objects support procedural data abstraction

– Structural types for after-the-fact interface abstraction

– Nominal types to express variants, design intent

• Support for functional programming

– First-class functions; type abstraction– First-class functions; type abstraction

• Traits for clean composition

– Avoid problems like name conflicts, unintentional open recursion

– State change in one trait “dimension” should not affect other traits

• Information hiding

– Avoid violations of abstraction, e.g. from casts, instanceof, or dynamic
typing

Plaid: a Permission-Based

Programming Language
37

Current Plaid Language Research

• Core type system Darpan Saini (UCLA), Joshua Sunshine

• Object model Karl Naden

• Typestate model Filipe Militão, Luís Caires (FCT)

• Gradual typing Roger Wolff, Ron Garcia,
Eric Tanter (U. Chile)

• Concurrency Sven Stork,
Manuel Mohr (U. Karlsruhe)

• Concurrency Sven Stork,
Manuel Mohr (U. Karlsruhe)
Paulo Marques (U. Coimbra)

• Web programming Joshua Sunshine

• Permission parameters Nels Beckman

• Compilation/typechecking Karl Naden, Joshua Sunshine,
Mark Hahnenberg, Sven Stork

38
Plaid: a Permission-Based

Programming Language

The Plaid Language

• A holistic, permission-based approach to managing state

– First-class abstractions for characterizing state change

– Use permission flow to infer concurrent execution

– Practical mix of static & dynamic checking

• Opens a new area of research

– Languages based on changeable states and permissions– Languages based on changeable states and permissions

• Potential benefits

– Programs can more faithfully model the target domain

– Permissions encode design constraints for static/dynamic checking

– Naturally safe parallel execution model

http://www.plaid-lang.org/

39
Plaid: a Permission-Based

Programming Language

