

Controlled Experiments for the empirical evaluation
of programming language constructs:

type systems as an example

Stefan Hanenberg
University of Duisburg-Essen, Germany

London, UK, 27.02.2012

Motivation

● Two different audiences for PL research
● Machines

– Execution speed, compilation speed, compile time errors,
etc.

● Human
– Development speed, development errors, etc.

● Nowadays research methods mainly address
first audience

● Usability of PLs plays rather minor role

Current situation in Empirical SE

● Theories mainly describe existence of a
difference

● Theories typically do not try to quantify
differences (for some good reasons)

● ...empirical knowledge rather low
● Experimenter currently have to „invent situations for

language constructs on their own“

● Example: static type systems....

Long term goal

● Theories
● Descriptions of situations where certain constructs dominate others

(size of difference part of theory)
● Large number of experiments that try to falsify theories
● Example (very first initial step):

– „When using an undocumented API,
....static typing reduces development time“

● General kind of theory:

● „When the code is of kind X,
...the use of construct A leads to C
...which differs to construct B by factors...“

Conclusion so far...

● We want to do empirical studies with humans...

 HOW?

6

Controlled Experiments (1)

• Scientific approach
– Observation of singular events (sample)

(e.g. developers using a dynamically/statically typed programming language)

• Formulation of hypothesis
• Identification of dependent / independent

variables
(e.g. development time depending on type system)

• Construction of environment
(IDEs, tasks, languages, machines, …)

– Collection of subjects
– Measurements (e.g. development time to solve a certain task)

– Analysis (mainly inductive statistics)

7

Controlled Experiments (2)

• Scientific argumentation

– Falsification of hypothesis
(use of statically typed language
decreases development time)

– More often
• Exploratory analysis (let‘s see what happens if…)

– NO PROOFS / NO GENERALIZABILITY

• But always the hope that repeated observations reveal
some truth

8

Where to start?

• Relatively few textbooks available specific to software engineering

9

Where to start?

• Huge bunch of textbooks outside the domain of software engineering

• Psychology

• Social Sciences

• Medicin

• …

10

Problems in Experimentation

• Main Problem
– Variability within/ among subjects
– Huge bunch of possible (unknown) influencing

factors
– „No measured effect“ can always be the result of a

rather inappropriate experiment setup

• Counteractions
– Experimental Design

• Within- / between subject design, Repeated measurement,
Blockdesign, Latin Square, etc.

– Task definitions

11

Problems: Experiment Design

• Comparison between two samples

Example 1: Same effect size, different deviation

12

Problems: Experiment Design

Example 1: Same effect size, different deviation

Large overlap
=> no (significant) difference

•Comparison between two samples

13

Example 1: Same effect size, different deviation

Large overlap
=> no (significant) difference Small overlap

=> (significant) difference

Problems: Experiment Design

• Comparison between two samples

14

Example 2: Different effect size, same deviation

Problems: Experiment Design

• Comparison between two samples

15

Example 2: Different effect size, same deviation

Large overlap
=> no (significant) difference Small overlap

=> (significant) difference

Problems: Experiment Design

• Comparison between two samples

16

Problem(s) in Experimentation

 Conclusion

 Experimenter should try to

− reduce deviation, and/or

− increase effect size

Possible ways
Adaptation of experimental design

(e.g. within-subject design) => Reduction of deviation

Adaptation of tasks
(no development „from scratch“) => Incease effect size

17

Within-Subject Design: Example

• Question: Do type Casts Matter? [Stuchlik, Hanenberg DLS 2011]

– 21 subjects (~ 5 h/subject)

– Programming Languages: Groovy & Java

– 5 simple programming tasks

– Measurement: time until completion

– Hypothesis: devTime(Groovy) < devTime(Java)

– Within-subject design

• Low number of subjects
• High variance between subjects

18

Within-subject measurement

Groovy first

Duration

1st

19

Within-subject measurement

Groovy first

Duration

Learning
1st

20

Within-subject measurement

Groovy first

Duration

Learning

Language
effect

1st

21

Within-subject measurement

Groovy first

Duration

Learning

Language
effect

2nd

1st

22

Within-subject measurement

Groovy first

Duration

measured
difference

23

Within-subject measurement

Groovy first

Duration

Java first

Duration

1st

24

Within-subject measurement

Groovy first

Duration

Java first

Duration

Learning
1st

25

Within-subject measurement

Groovy first

Duration

Java first

Duration

Learning

Language
effect

1st

26

Within-subject measurement

Groovy first

Duration

Java first

Duration

Learning

Language
effect

1st
measured
difference

27

Within-subject measurement

Groovy first

Duration

Java first

Small effect in Group „Groovy First“

Large effect in Group „Java first“

Duration

28

Experiment Results

 Results/Interpretation
 Type casts are not that important

[Stuchlick, Hanenberg@DLS'11]

29

Within-subject measurement

• Problem

– If learning effect larger than language effect
=> no measured difference

• But...

– Large effort put into task definition and pilot-tests

– Learning effects rather minor problems

30

Task Definition

• What is the hypothesis?

– Large number of techniques do not already provide one

• Motivation

– „Find a programming task, where static type system (likely) have an
effect“

– Reduce confounding factors as much as possible

• No IDE (!), Tasks quite small

– Variability among subjects should be as less as possible

• Our „process“

– Discussion, discussion, discussion, pure speculations

– Very small pilot studies

31

Task Definition - Example

// Groovy solution

public def setUpLevelField(def x_position, def y_position, def trapKind){

 def trap = new Trap(trapType);

 def trapField = new TrappedLevelField(x_position, y_position, trap);

 trapField.setItems(new GameList());

 trapField.setSubject(new Player(new Inventory(), new Body()));

 return trapField;

}

• Task
– „Create for the dungeon game a new field, which

contains a trap and put a new hero on it“

32

Example: Static Type System

● Background: 4 experiments, „mixed results“

● Idea: Static type systems help when using an undocumented API

● Experiment
● Java / Groovy as PLs

● 9 programming tasks (designing tasks took about 2 month)

– 2 tasks: fix semantic error / 2 tasks: fix type error / 5 tasks: use API classes

● 33 subjects (mainly students)

● Within-subject design (2 groups)

● Result
● Positive effect for 6/9 tasks

– No effect on fixing semantic error

– Positive effect on fixing type error

– Mostly (4/5) positive effect on using API classes

33

Example: Static Type System
● Task 4,5:

Semantic
errors

● 1,2,3,6,8: New
class usage

● 7, 10:
Type errors

34

Example: Static Type System
● Potential problems

● Artificially constructed API

– parameter names do not reflect on type names (but on names
chosen from the domain)

– Is it repesentative?
● Artificially constructed environment

● Artificial programming tasks

● Java type system

● Maybe we measured something else

● „Existence of type annotations in the code help....no matter whether they
are statically type checked or not“

● Maybe „in the wild“ positive effect of static type system „vanishs“

● There is no generalizability

35

Discussion & Conclusion

● Controlled experiments as a research method
● Many, many problems

● Missing experimentation in the past
● Basics
● Organizational issues
● ...

● It is still worth to do experiments
● Programming languages are (mostly) for humans

36

Problem(s) in Experimentation

• Between-Subject Design: Each subject measured once
– Problem

• Deviation among subjects potentially hides effect
• Requires balancing between groups (for small groups)

– Benefit
• No learning effect , Lower costs than within-subject-design

• Within-Subject Design: Each subject measured twice
– Problem

• Obvious learning effects
– Benefit

• Indivivual deviation not that important

Controlled Experiments for the empirical evaluation
of programming language constructs:

type systems as an example

Stefan Hanenberg
University of Duisburg-Essen, Germany

London, UK, 27.02.2012

