‘Controlled Experiments for the empirical evaluation

of programming language constructs:

9 type systems as an example -~

Stefan Hanenberg
University of Duisburg-Essen, Germany

London, UK, 27.02.2012

Motivation

 Two different audiences for PL research

e Machines

- Execution speed, compilation speed, compile time errors,
etc.

e Human
- Development speed, development errors, etc.

 Nowadays research methods mainly address
first audience

» Usability of PLs plays rather minor role

Current situation in Empirical SE

* Theories mainly describe existence of a
difference

* Theories typically do not try to quantify
differences (for some good reasons)

e ...empirical knowledge rather low

» Experimenter currently have to ,invent situations for
language constructs on their own”

 Example: static type systems....

Long term goal

e Theories

« Descriptions of situations where certain constructs dominate others
(size of difference part of theory)

e Large number of experiments that try to falsify theories
« Example (very first initial step):

- ,When using an undocumented API,
....static typing reduces development time”

« General kind of theory:

o When the code is of kind X,
...the use of construct A leads to C
...which differs to construct B by factors..."

Conclusion so far...

* \We want to do empirical studies with humans...

HOW?

Controlled Experiments (1)

* Scientific approach
— Observation of singular events (sample)

(e.g. developers using a dynamically/statically typed programming language)

* Formulation of hypothesis

* |dentification of dependent / independent
variables

(e.g. development time depending on type system)

 Construction of environment

(IDEs, tasks, languages, machines, ...)

— Collection of subjects
— MeaSU rementS (e.g. development time to solve a certain task)
— AnalyS|S (mainly inductive statistics)

Controlled Experiments (2

* Scientific argumentation

— Falsification of hypothesis
(use of statically typed language
decreases development time)

— More often

° Exploratory analysis (let's see what happens if...)
— NO PROOFS / NO GENERALIZABILITY

* But always the hope that repeated observations reveal
some truth

Where to start?

* Relatively few textbooks available specific to software engineering

e e
: EXPERIMENTATION IV
Luie Frovhek SOFTWARE
EWCGINEERING

AEE | An Inlrucluclism

IER I

EEE]

EER

Kontrollierte Experlma-nte Clnes Wi

in t:ler Softwaretechnik
7-al amd M

SOFTWARE PSYCHOLOGY -

........

By Mogh m - Hans (iczer Bombach
fol et ' oo 17 gy

Foundations of
Empirical Software AHanFlé%p -
Engineering _.xf.ffimmm

Little, Brown Computer Systems Series

flbert Endres
Dieter Rombach

Where to start?

Huge bunch of textbooks outside the domain of software engineering

* Psychology

 Social Sciences

* Medicin

Problems in Experimentation

* Main Problem

— Variability within/ among subjects

— Huge bunch of possible (unknown) influencing
factors

— ,No measured effect’ can always be the result of a
rather inappropriate experiment setup

* Counteractions
— Experimental Design

* Within- / between subject design, Repeated measurement,

Blockdesign, Latin Square, etc.
— Task definitions

10

Problems: Experiment Design

* Comparison between two samples

/Example 1. Same effect size, different deviation \

0,4 -
0,35 0,35
> _
g 0.3 Z 0,3
[w
8 0:25 7 § 0,25 -
Z 0,2 - Z 0,2 -
a = '
8 0,151 ® 0,15 |
2 S
a 0,1+ & 0,1 -
0,05 - 0,05 -
0 T T 1 0

\\ 0 10 20 30 0 5 10 15 20 y

11

Problems: Experiment Design

‘Comparison between two samples

/ Example 1: Same effect size, different deviation \

0,4 - 04 -
0,35 7 0,35 -
= |
g 03 Z 0,3 -
@ 0,25 - <
a g 0,25
2 0,2+ =z 0,2
§ous | Largeoveriap § o.is-
o | | => no (significant) difference S
a 0,1 a 0,1
0,05 - ‘/ ‘ 0,05 -
0 T 1 0

\\ 0 10 20 30 0 5 10 15 20 y

12

Problems: Experiment Design

* Comparison between two samples

/ Example 1: Same effect size, different deviation \

0,4 - 0.4 -

0,35 0,35 -
: r< 7 0,3 -

0,25 - |
S 0,154 | Large overlap 015 |

1] L=>no (significant) difference o1 Small overlap
0,05 - ‘/ ‘ 0,05 - => (significant) difference

0 ! ! 0 T LV_*A T 1

\\ 0 10 20 30 0 5 10 15 20 y

13

o
W

o
N
wu

Probability Density
o
M
Probability Density
o
M

o
[

* Comparison between two samples

Problems: Experiment Design

/ Example 2: Different effect size, same deviation

0,35 A

Probability Density
o
N

VNN

10

20

30

0,35 -

Probability Density
(] (=]

o . o L, ©

— [a] rJ (W])

0,05 -

DAVAN

o
(]

10

20

o

S

14

Problems: Experiment Design

* Comparison between two samples

/ Example 2: Different effect size, same deviation

0,4 -
0,35 -

o
N O
0w

(=]
= -
(93]

Probability Density
o
(%]

O -
-
[y

Large overlap

10

j (significant? difference

20

30

Probability Density

0,35 -

o
(&]

0,25 -

o
rJ

0,15 -

o
—

0,05 -

0

£

L

\

Small overlap

=> (significant) difference

7~

0

10

AN

20

S

15

Problem(s) in Experimentation

Conclusion
Experimenter should try to
- reduce deviation, and/or
K - increase effect size /

® Possible ways

® Adaptation of experimental design
(e.g. within-subject design) => Reduction of deviation

® Adaptation of tasks
(no development ,from scratch®) => Incease effect size

16

Within-Subject Design: Example

* Question: Do type Casts Matter? iswchii, Hanenberg bLs 20111

— 21 subjects (~ 5 h/subject)
— Programming Languages: Groovy & Java
— 5 simple programming tasks
— Measurement: time until completion
— Hypothesis: devTime(Groovy) < devTime(Java)
— Within-subject design
* Low number of subjects
* High variance between subjects

17

Within-subject measurement

/ Groovy first \
st

/

A

Duration

18

Within-subject measurement

/ Groovy first \
st

Learning

o
4

A

Duration

19

Within-subject measurement

/ Groovy first \

l P

/ Duration

Language
w‘ect

Within-subject measurement

/ Groovy first \

21

Within-subject measurement

/ Groovy first \

measured
difference

22

Within-subject measurement

/ Groovy first \

)

Duration

-

/ Java first \

1st

/

[
>

Duration

Within-subject measurement

/ Groovy first \

|
| |

Duration

-

/ Java first \

Learning

Duration

24

Within-subject measurement

/ Groovy first \ / Java first \

)

| <

I) ’
N [
Ll >

Duration / Duration

Language
\ / \e\ffect

25

Within-subject measurement

/ Groovy first \

|
| |

Duration

-

/ Java first \

measured
difference

‘4 >|

\\ Duration

26

Within-subject measurement

/ Groovy first \

—

S

Dura:[icy

~

Java first \

‘ <

>|

S

Dura:[icy

® Small effect in Group ,,Groovy First®

® [arge effect in Group ,Java first"

27

Experiment Results

[Stuchlick, Hanenberg@DLS'11]

dyn. typed
-stat. typed

P
HEREHR ¥ . /
% - il J_ 7 1 /
Task 1 Taslk 2 Tasj

Tasks

* Results/Interpretation

* Type casts are not that important

28

Within-subject measurement

* Problem

— If learning effect larger than language effect
=> no measured difference

* But...

— Large effort put into task definition and pilot-tests
— Learning effects rather minor problems

29

Task Definition

« What is the hypothesis?

— Large number of techniques do not already provide one
. Motivation

_ ,Find a programming task, where static type system (likely) have an
effect”

— Reduce confounding factors as much as possible
« No IDE (!), Tasks quite small
— Variability among subjects should be as less as possible

« Our ,process”

— Discussion, discussion, discussion, pure speculations
— Very small pilot studies

30

Task Definition - Example

 Task

— ,Create for the dungeon game a new field, which
contains a trap and put a new hero on it"

// Groovy solution

public def setUpLevelField(def x position, def y position, def trapKind) {
def trap = new Trap (trapType):;
def trapField = new TrappedLevelField(x position, y position, trap);
trapField.setItems (new GamelList ());
trapField.setSubject (new Player (new Inventory (), new Body())):

return trapField;

31

Example: Static Type System

Background: 4 experiments, ,mixed results”
ldea: Static type systems help when using an undocumented API

Experiment

« Java/ Groovy as PLs

« 9 programming tasks (designing tasks took about 2 month)
— 2 tasks: fix semantic error / 2 tasks: fix type error / 5 tasks: use API classes
« 33 subjects (mainly students)

« Within-subject design (2 groups)
Result
« Positive effect for 6/9 tasks

— No effect on fixing semantic error
- Positive effect on fixing type error
- Mostly (4/5) positive effect on using API classes

32

Example: Static*: Type System

] Language
¢ TaSk 4,5 000 Groovy
Semantic Soava

errors . *
30007 -
¢ 1,2,3,6,8: New o o o
class usage . 7 x o
b O O
E 20007 ~ o
¢ 7, 10: = 8 o o T
o Pt o
Type errors g
10007 *
% O “ 3:
0 é %

Task Task Task Task Task Task Task Task Task
1 2 3 4 5 6 7 8 9

Task

Example: Static Type System

« Potential problems

o Atrtificially constructed API

— parameter names do not reflect on type names (but on names
chosen from the domain)

- Is it repesentative?
« Artificially constructed environment

o Artificial programming tasks
e Java type system
« Maybe we measured something else

« ,Existence of type annotations in the code help....no matter whether they
are statically type checked or not*

« Maybe .in the wild” positive effect of static type system ,vanishs”

« There is no generalizability

34

Discussion & Conclusion

e Controlled experiments as a research method
 Many, many problems

* Missing experimentation in the past
e Basics
* Organizational issues

e |t is still worth to do experiments

 Programming languages are (mostly) for humans

35

Problem(s) in Experimentation

* Between-Subject Design: Each subject measured once

— Problem

* Deviation among subjects potentially hides effect
* Requires balancing between groups (for small groups)

— Benefit
* No learning effect , Lower costs than within-subject-design

* Within-Subject Design: Each subject measured twice

— Problem
* Obvious learning effects
— Benefit
* Indivivual deviation not that important

36

‘Controlled Experiments for the empirical evaluation

of programming language constructs:

9 type systems as an example -~

Stefan Hanenberg
University of Duisburg-Essen, Germany

London, UK, 27.02.2012

