
Exploring the Inheritance
Design Space with Grace

Kim Bruce
Pomona College

Based on work by Tim Jones, Michael Homer,
James Noble, & Andrew Black

WG2.16 meeting, 8/2017

In the Beginning

✦ In the 80’s there were models of objects,
classes and inheritance in a lovely functional
garden with flowers, trees, and smiling
researchers pondering the universe.
‣ Players included Cardelli, Cook & Palsberg, Kamin,

and Reddy.

✦ Later the sun shone more brightly as types
were added to the models by Cook & the Abel
group, and Mitchell & his group.

2

Approaching reality

✦ Different models with instance variables were
proposed in early ’90s:
‣ Pierce & Turner, Bruce, Abadi & Cardelli, Fisher &

Mitchell, Featherweight Java
‣ Typically based on existential quantifiers & various

numbers of fixed points
‣ … assignment came later …

3

Lying in State
✦ Virtually all “real” OO languages are

imperative.

✦ State provides added expressiveness, but makes
everything harder

✦ Initialization (constructors) is big problem
‣ Object can be visible while being initialized.

✦ Eventually lots of models, but larger design
space …

4

How does state impact the
design of inheritance in

 OO languages?

Entering into Grace
✦ Grace: Object-based language aimed at

teaching novices.
‣ Everything is an object
- Classes are definable: methods returning objects
- Simple dynamic method dispatch

‣ Simple, uniform syntax
‣ Correspondingly simple semantics
‣ Optionally typed
‣ Blocks as first-class closures

6

 Objects

def mySquare = object {

 var side := 10

 method area {
 side * side
 }

 method stretchBy(n) {
 side := side + n
 }
}

7

Classes

class aSquareWithSide (s: Number) -> Square {
 var side: Number := s

 method area -> Number {
 side * side
 }

 method stretchBy (n: Number) -> Done {
 side := side + n
 }

 print "Created square with side {s}"
}

No separate constructors.
Type annotations can be omitted or included

• … generate objects:

8

Classes

method aSquareWithSide (s: Number) -> Square {
 object {
 var side: Number := s

 method area -> Number {
 side * side
 }

 method stretchBy (n: Number) -> Done {
 side := side + n
 }

 print "Created square with side {s}”
 }
}

• … really methods returning fresh objects:

9

Extending Objects/Classes

✦ Notion of modifying and extending existing
definitions pervasive in OO programming
‣ But mechanisms are different

✦ What should we use for Grace?

✦ Focus of rest of talk

10

Objects vs. Classes

✦ Which is primitive?

✦ How to define extension?
‣ object-based ⇒ delegation (Abadi/Cardelli,Mitchell/Fisher)
‣ class-based ⇒ inheritance (Cook et al, Bruce, Pierce et al,

etc)

11

Example

12

class graphic {
 method image { required }

 method draw { canvas.render(image) }

 var name := “A graphic”

 displayList.register(self)

 draw

 print (name)
}

def amelia = object {

 inherit graphic

 method image is override { images.amelia }

 self.name := "Amelia"
}

what gets registered?

what is drawn?

which name is printed?

what image used?

What happens when amelia created & invoke amelia.draw?

Inheritance Design Space

✦ Focus on variations in order/timing of
‣ Creation (allocation)
‣ Initialization

✦ … when defining subobject from super

13

Issues

✦ Registration:
‣ Does identity of object change during construction?

‣ What is effect of the register method in superclass?

✦ Down-calls:
‣ Can a method request in superclass invoke a method in subclass?

What about during construction?

✦ Change at a distance:
‣ Can ops on one object implicitly change another?

14

More Issues

✦ Pre-existence
‣ Can an object inherit from an existing object?

✦ Stability
‣ Is the implementation of methods the same through an

object’s lifetime? I.e., what happens between execute super
constructor and use in sub-object?

✦ Simplicity
‣ Easy to explain — but lead to common mechanisms

15

Inheritance models

✦ Objects:
‣ Delegation
‣ Concatenation

✦ Emulating Classes:
‣ Merged identity
‣ Uniform identity

16

Delegation

n

sub

n m

n

delegate

sub.n handled locally …

Delegation

n

sub

m m

n

delegate

m

sub.m goes to delegate …

Delegation

n

sub

m m

n

delegate

What if delegate has: method m {… self.n …}
 Invoke: sub.m

self

use self from sub …

n

which n?

m

Forwarding doesn’t update self…

Example

20

def graphic = object {
 method image { required }

 method draw { canvas.render(image) } — downcall fine

 var name := “A graphic”

 displayList.register(self) — fails to register amelia
 draw — crashes
 print (name) — prints “A graphic”
}

def amelia = object {
 inherits graphic

 method image is override { images.amelia } — not stable

 self.name := “Amelia"
}

 — changes value in graphic
 object

Delegation
✦ Inherited methods redirected to super-object

‣ But, value of self in inherited method reset to subobject.

‣ Down-calls fine after construction, but not during
initialization
- Superobject initialized before subobject created
- Registration in superclass will not work for sub-object

‣ Not stable structure before & after construction

‣ Can inherit from existing object
- But mutation to inherited field visible to other inheritors (shared)

✦ Example:
‣ Self, Lua, & Javascript (but no action at distance)

21

Concatenation

✦ Allocate space for new
‣ including features of old

✦ Shallow clone super into new space
‣ Initializes

✦ Add new methods and instance variables

✦ Run initialization of sub

22

xxx

sub

super

xxx

yyy

Example

23

def graphic = object {
 method image { required }

 method draw { canvas.render(image) } — downcall fine

 var name := “A graphic”

 displayList.register(self) — fails to register amelia
 draw — downcall fails in constructor
 print (name) — prints “A graphic” when create amelia
}

def amelia = object {
 inherits graphic

 method image is override { images.amelia } — not stable

 self.name := “Amelia" — updates fine
}

Concatenation
✦ Make shallow copy, then add changes to front

‣ Execute first version of method found

‣ Like delegating to shallow clone of super.

‣ Down calls only after construction over
‣ Registration fails on sub-object
- Super-object initialized before cloning

‣ No effect at distance on super state because cloned
‣ All objects must be (shallow) cloneable to be inherited from

✦ Example:
‣ Kevo, can implement in Javascript

24

Emulating Class Inheritance

Merged Identity

✦ Allocate space for new
‣ including features of old

✦ Initialize super in new space

✦ Add & override methods and instance variables
from sub

✦ Run initialization of sub

26

xxx

sub

yyy

Example

27

class graphic {
 method image { required }

 method draw { canvas.render(image) } — downcall fine

 var name := “A graphic”

 displayList.register(self) — registers amelia
 — though visible as graphic initially
 draw — down call fails
 print (name) — prints “A graphic” when create amelia
}

def amelia = object {
 inherits graphic

 method image is override { images.amelia } — not stable

 self.name := "Amelia"
}

Merged Identity

✦ Parent object constructed & initialized,
mutated to child at the point of inheritance.
‣ Must inherit from fresh object
‣ Down-calls will work only after construction over
- Self changes only after initialization of super.
- Overridden methods stay accessible with super
- Methods not stable during initialization

‣ Registration fine (identity stable)

✦ Example: C++
28

Uniform Identity

✦ Allocate space for new
‣ including features of old

✦ Add methods from super

✦ Add & override methods from sub

✦ Run initialization of super

✦ Run initialization of sub

29

sub

yyy

Same (new) self !!

xxx

Example

30

class graphic {
 method image { required }

 method draw { canvas.render(image) } — correct downcall

 var name := “A graphic”

 displayList.register(self) — registers amelia
 draw — correctly uses overridden image
 print (name) — prints “A graphic” when create amelia
}

def amelia = object {
 inherits graphic

 method image is override { images.amelia }

 self.name := "Amelia"
}

Uniform Identity

✦ Allocate structure for full sub-object, with new/
revised methods. Then initialize top down.
‣ Must inherit from fresh object
‣ Down-calls fine during construction & later
‣ Stable, though may observe uninitialized fields.
‣ Registration fine (identity stable)

✦ Like Java, C#

31

Comparison

32

Registration Downcall Distance Super-object
can exist? Stable

Delegation no no* yes existing no

Concatenation no no* no existing no

Merged yes no* no fresh no*

Uniform yes yes no fresh yes

* = change after constructor

Which to Choose?

✦ Delegation & Concatenation both reasonable
‣ Except wanted registration and down-calls to work.
‣ Concatenation requirement for shallow clone

problematic.
‣ Delegation action at distance may be confusing to

novices.

✦ Uniform identity attractive
‣ supports registration, down-calls, stability.
‣ Requirement for fresh objects limiting.

33

Multiple Inheritance

✦ Even more complex

✦ Decided to use traits
‣ Restricted to no explicit state
- Avoids issues with initialization

‣ Can inherit one superclass, use many traits
‣ Can exclude methods from parent
- Forced to resolve conflicts

‣ Alias inherited methods to get effect of super

34

Traits

class catfish {
 use cat
 alias catSpeak = speak
 use fish
 alias fishSpeak = speak
 method speak {
 catSpeak
 fishSpeak
 }
}

Summary

✦ Looked at how features of inheritance useful in
examining how to do reuse.
‣ ECOOP 2016 paper provides formal semantics.
‣ JOT paper “Grace’s Inheritance” this spring
‣ Complex, but provides insights.

✦ Capturing classical inheritance has challenges
in object-based languages.

36

Whither Grace

✦ Settled (so far) on uniform identity plus traits.
‣ though not everyone happy.
‣ advantages from earlier slide.
‣ … and similarity to existing languages.

✦ In practice, inheritance from classes
straightforward.
‣ but limited from objects.
‣ requires planned reuse.

37

Grace

✦ More info (including language spec) available at
gracelang.org

✦ Text, objectdraw graphics library, and other
teaching materials available.

38

Grace in Action

✦ Used three times in introductory courses at
Pomona.

✦ Used four times at Portland State at variety of
levels.

✦ Very successful for introducing novices to OO
programming.

39

Questions?

