
Design Principles for  
the Grace AST

Andrew P. Black
Portland State University 

& 
Victoria University of Wellington

1

Why do we care?

• Isn’t the AST an internal part of the
implementation?

• Why should its design me worth public
debate?

2

Dialects
• Grace has dialects—variant languages

designed to support a specific teaching
(or other) objective
‣ parallel programming, graphics, security ...

• Dialects can extend Grace by defining
methods

3

Example

4

Dialects
• Grace has dialects—variant languages

designed to support a specific teaching
objective

• Dialects can extend Grace by defining
methods

• Dialects can restrict Grace by defining a
checker that walks an AST representing
the dialect user’s code, and generates
error messages

5

Exampledef thisDialect is public = object {
 method parseChecker (moduleObj) {
 moduleObj.accept(bsVisitor)
 }
}

def bsVisitor = object {
 inherit ast.baseVisitor
 method asString {
 "the beginningStudent visitor"
 }

 method visitArray(v) -> Boolean {
 DialectError.raise("square brackets are not used in this dialect; " ++
 "for a list, use list(_, _, ...)") with (v)
 false
 }
 method visitVarDec(v) -> Boolean {
 def name = v.nameString
 if (false == v.dtype) then {
 DialectError.raise "no type given to var '{v.nameString}'"
 with (v.name)
 }
 if (unicode.inCategory(name, "Lu")) then {
 DialectError.raise("by convention, variables start " ++
 "with a lower-case letter") with (v.name)
 }
 true
 } 
 ...

6

Consequences

• The author of a dialect must know
enough about the AST to write a simple
tree-walker, examine the dialectical
module, and generate error messages.

• Hence, the AST is (to some extent) part
of the Grace language definition.

7

What is an AST, anyway?

• Abstract Syntax Tree

• It’s a tree, that represents the syntax of
a program

• It’s abstract, in the sense that it contains
just the information needed for your
particular purpose
‣ less information than the full parse tree

8

What’s the Problem?

• We don’t know the “particular purpose”
of a dialect-writer
‣ dialects are as varied as courses in computing,

‣ or other purpose to which Grace might be put

9

What do we know (1)?
• Dialects produce error messages
‣ Example:

 if (unicode.inCategory(name, "Lu")) then {
 DialectError.raise("by convention, variables start " ++
 "with a lower-case letter") with (v.name)
 }

10

Principles
1. The AST must provide access to exact

source-code ranges

11

What do we know (2)?

• Dialects are dialects of Grace!

• Grace has, by design, certain properties

• Dialect-writers probably want to exploit
those properties

• Example:
‣ each variables has a unique defining

occurrence, which can be determined statically

12

Principles
1. The AST must provide access to exact

source-code ranges
2. Information deducible by the compiler

should be accessible through the AST
‣ does not imply that it’s pre-computed

13

What do we know (3)?

• The dialect may be grouping syntax in
varied ways

• Example: def and var declarations

14

def var

object fieldDef fieldVar
block or
method tempDef tempVar

What do we know (3)?

• The dialect may be treating syntax in
varied ways

• Example: def and var declarations

15

def var

object fieldDef fieldVar
block or
method tempDef tempVar

• First discussion (with Richard Roberts): 
 
 
 
 
 
 

• Rationale:
‣ compilation of temps and fields will be different,
compilation of defs and vars will be similar

16

Declaration

tempDecl fieldDecl

tempDef tempVar fieldDef fieldVar

Declaration

defDecl varDecl

fieldDef tempDef fieldCar tempVar

• Second thoughts (implementation): 
 
 
 
 
 
 

• Rational:
‣ content of defs and vars will be different,
content of temps and fields will be similar

17

Declaration

tempDecl fieldDecl

tempDef tempVar fieldDef fieldVar

Declaration

defDecl varDecl

fieldDef tempDef fieldCar tempVar

• Third thoughts:
• Visitors are not object-oriented!

• Visitors expose the class hierarchy
• This is an implementation detail that ought to

be hidden

• The public interface does not include the
implementation classes

• only the interfaces should be public

18

Two approaches

1. Class-Based discrimination
‣ e.g., visitors

‣ visitField, visitTemp, vs. visitDef,
visitVar: can’t be combined

2. Predicate-based discrimination
‣ isDef, isVar, isField, isTemp: easy to

combine

19

✓

Instead of...

 method visitArray(v) -> Boolean {
 ...
 }
 method visitVarDec(v) -> Boolean {
 ...
 }
 method visitDefDec(v) -> Boolean {
 ..
 }

20

Prefer:

 method visitNode(v) -> Boolean {
 if (v.isArray) then {  
 ... 
 } elseif (v.isVarDec) then {
 ...
 } elseif (v.isDefDec) then {
 ...
 }

 ...
 }

21

Principles
1. The AST must provide access to exact

source-code ranges
2. Information deducible by the compiler

should be accessible through the AST
1. does not imply that it’s pre-computed

3. Provide predicates to distinguish
syntactic elements; don’t force the dialect
writer to use a visitor

22

Questions

• Should we even allow the dialect writer
to write a visitor?

• Is abstraction important? Or is an AST
just a data structure?

23

