Design Principles for
the Grace AST

Andrew P. Black

Portland State University
&
Victoria University of Wellington

IIIIIIIIII



Why do we care?

e |sn’tthe AST an internal part of the
implementation?

 Why should its design me worth public
debate?

Portland State

IIIIIIIIII



Dialects

* (Grace has dialects—variant languages
designed to support a specific teaching
(or other) objective

> parallel programming, graphics, security ...

e Dialects can extend Grace by defining
methods

Portland State

IIIIIIIIII



Example

K Download unless.grace Help? Search
1~ method do (block:Function@[Done]) unless (condition:Function@[Boolean]) {
2 if (condition.apply.not)|then { block.apply }
3 }
4
K Download user.grace Help? Search ¢
1 dialect "unless"
2 1import "io" as io
3
4 def n = (io.ask "give me a number").asNumber
5 print "You gave me {n}"
6 do { print "That's a good number" } unless { n == 42 }
7

Portland State

UNIVERSITY



Dialects

 (Grace has dialects—variant languages
designed to support a specific teaching
objective

e Dialects can extend Grace by defining
methods

e Dialects can restrict Grace by defining a
checker that walks an AST representing
the dialect user’s code, and generates
error messages

Portland State

IIIIIIIIII



Example

def thisDialect is public = object {
method parseChecker (moduleObj) {
moduleObj.accept(bsVisitor)
¥

def bsVisitor = object {
inherit ast.baseVisitor
method asString {
"the beginningStudent visitor"
¥

method visitArray(v) —> Boolean {
DialectError.raise("square brackets are not used in this dialect; " ++
"for a list, use list(_, _, ... )") with (v)
false
b
method visitVarDec(v) —-> Boolean {
def name = v.nameString
if (false == v.dtype) then {
DialectError.raise "no type given to var '{v.nameString}'"
with (v.name)
¥
if (unicode.inCategory(name, "Lu")) then {
DialectError.raise('"by convention, variables start " ++
"with a lower-case letter") with (v.name)
¥

true

Portland State 6

UNIVERSITY



Consequences

e The author of a dialect must know
enough about the AST to write a simple
tree-walker, examine the dialectical
module, and generate error messages.

e Hence, the AST is (to some extent) part
of the Grace language definition.

Portland State 7

IIIIIIIIII



What is an AST, anyway?

e Abstract Syntax Tree

e |t's a tree, that represents the syntax of
a program

e |t's abstract, in the sense that it contains
just the information needed for your
particular purpose

> less information than the full parse tree

Portland State 8

IIIIIIIIII



What’s the Problem?

e We don’t know the “particular purpose”
of a dialect-writer

> dialects are as varied as courses in computing,

> or other purpose to which Grace might be put

Portland State

IIIIIIIIII



What do we know (1)?

e Dialects produce error messages

> Example:

if (unicode.inCategory(name, "Lu")) then {
DialectError.raise("by convention, variables start " ++
"with a lower-case letter") with (v.name)

+
K Download string rather than list.grace Help? Search Q
1 dialect "beginningStudent"”
2
£ 3 var Customer:Person
A ALl ~lanumias vl o ~L i PP By gl LI P e L LU PPN = L man nmenN
Dialect beginningStudent: by convention, variables start with a lower-case
letter.
7
8 - for (shoppinglList) do { item:String ->
9 print (item)
10 }
11

Portland State

UNIVERSITY



Principles

1. The AST must provide access to exact
source-code ranges

Portland State

IIIIIIIIII



What do we know (2)?

e Dialects are dialects of Grace!
e Grace has, by design, certain properties

e Dialect-writers probably want to exploit
those properties

e Example:

> each variables has a unique defining
occurrence, which can be determined statically

Portland State 12

IIIIIIIIII



Principles

1. The AST must provide access to exact
source-code ranges

2. Information deducible by the compiler
should be accessible through the AST

> does not imply that it's pre-computed

Portland State 3

IIIIIIIIII



What do we know (3)?

* The dialect may be grouping syntax in
varied ways

e Example: def and var declarations

def var

object

block or
method

Portland State 4

IIIIIIIIII



What do we know (3)?

 The dialect may be treating syntax in
varied ways

e Example: def and var declarations

def var

object fieldDef

block or
method

tempDef

Portland State 15

IIIIIIIIII



e First discussion (with Richard Roberts):

Declaration

tempDecl fieldDecl

‘ tempDef \ ‘ tempVar \ ‘ fieldDef \ ‘ fieldVar \

e Rationale:

> compilation of temps and fields will be different,
compilation of defs and vars will be similar

Portland State 6

IIIIIIIIII



e Second thoughts (implementation):

Declaration

e Rational:

» content of defs and vars will be different,
content of temps and fields will be similar

Portland State

IIIIIIIIII



 Third thoughts:

* Visitors are not object-oriented!

- Visitors expose the class hierarchy

- This is an implementation detail that ought to
be hidden

» The public interface does not include the
implementation classes

- only the interfaces should be public

Portland State 8

IIIIIIIIII



Two approaches

1. Class-Based discrimination —
> e.g., visitors -

» visitE+eTd, visitTemp, vs. visitDef,
risitVar: can’t be combined

2. Predicate-based discrimination ‘/

» isDef, 1sVar, i1sField, 1sTemp: easy to
combine

Portland State 19

IIIIIIIIII



Instead of...

method visitArray(v) —> Boolean {

}

method visitVarDec(v) —-> Boolean {

}

method visitDefDec(v) —> Boolean {

}

Portland State

IIIIIIIIII

20



Prefer:

method visitNode(v) —-> Boolean {
if (v.isArray) then {

} elseif (v.isVarDec) then {
} elseif (v.isDefDec) then {

}

Portland State

IIIIIIIIII

21



Principles

1. The AST must provide access to exact
source-code ranges

2. Information deducible by the compiler
should be accessible through the AST

1. does not imply that it’s pre-computed

3. Provide predicates to distinguish
syntactic elements; don’t force the dialect
writer to use a visitor

Portland State 22

IIIIIIIIII



Questions

e Should we even allow the dialect writer
to write a visitor?

e |s abstraction important? Oris an AST
just a data structure?

Portland State 23

IIIIIIIIII



