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Why do we care?

• Isn’t the AST an internal part of the 
implementation?

• Why should its design me worth public 
debate?
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Dialects
• Grace has dialects—variant languages 

designed to support a specific teaching 
(or other) objective
‣ parallel programming, graphics, security ...

• Dialects can extend Grace by defining 
methods
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Example
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Dialects
• Grace has dialects—variant languages 

designed to support a specific teaching 
objective

• Dialects can extend Grace by defining 
methods

• Dialects can restrict Grace by defining a 
checker that walks an AST representing 
the dialect user’s code, and generates 
error messages
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Exampledef thisDialect is public = object { 
    method parseChecker (moduleObj) { 
        moduleObj.accept(bsVisitor) 
    } 
} 

def bsVisitor = object { 
    inherit ast.baseVisitor 
    method asString { 
        "the beginningStudent visitor" 
    } 

    method visitArray(v) -> Boolean { 
        DialectError.raise("square brackets are not used in this dialect; " ++ 
              "for a list, use list(_, _, ... )") with (v) 
        false 
    } 
    method visitVarDec(v) -> Boolean { 
        def name = v.nameString 
        if (false == v.dtype) then { 
            DialectError.raise "no type given to var '{v.nameString}'" 
                with (v.name) 
        } 
        if (unicode.inCategory(name, "Lu")) then { 
            DialectError.raise("by convention, variables start " ++ 
                "with a lower-case letter") with (v.name) 
        } 
        true 
    } 
    ...
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Consequences

• The author of a dialect must know 
enough about the AST to write a simple 
tree-walker, examine the dialectical 
module, and generate error messages.

• Hence, the AST is (to some extent) part 
of the Grace language definition.
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What is an AST, anyway?

• Abstract Syntax Tree

• It’s a tree, that represents the syntax of 
a program

• It’s abstract, in the sense that it contains 
just the information needed for your 
particular purpose
‣ less information than the full parse tree
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What’s the Problem?

• We don’t know the “particular purpose” 
of a dialect-writer
‣ dialects are as varied as courses in computing,

‣ or other purpose to which Grace might be put
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What do we know (1)?
• Dialects produce error messages
‣ Example: 

        if (unicode.inCategory(name, "Lu")) then { 
            DialectError.raise("by convention, variables start " ++ 
                "with a lower-case letter") with (v.name) 
        }
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Principles
1. The AST must provide access to exact 

source-code ranges
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What do we know (2)?

• Dialects are dialects of Grace!

• Grace has, by design, certain properties

• Dialect-writers probably want to exploit 
those properties

• Example:
‣ each variables has a unique defining 

occurrence, which can be determined statically
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Principles
1. The AST must provide access to exact 

source-code ranges
2. Information deducible by the compiler 

should be accessible through the AST
‣ does not imply that it’s pre-computed
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What do we know (3)?

• The dialect may be grouping syntax in 
varied ways

• Example: def and var declarations
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def var

object fieldDef fieldVar
block or 
method tempDef tempVar



What do we know (3)?

• The dialect may be treating syntax in 
varied ways

• Example: def and var declarations
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def var

object fieldDef fieldVar
block or 
method tempDef tempVar



• First discussion (with Richard Roberts): 
 
 
 
 
 
 

• Rationale:
‣ compilation of temps and fields will be different, 
compilation of defs and vars will be similar
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tempDecl fieldDecl

tempDef tempVar fieldDef fieldVar

Declaration

defDecl varDecl

fieldDef tempDef fieldCar tempVar



• Second thoughts (implementation): 
 
 
 
 
 
 

• Rational:
‣ content of defs and vars will be different, 
content of temps and fields will be similar
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• Third thoughts:
• Visitors are not object-oriented!

• Visitors expose the class hierarchy
• This is an implementation detail that ought to 

be hidden

• The public interface does not include the 
implementation classes

• only the interfaces should be public
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Two approaches 

1. Class-Based discrimination
‣ e.g., visitors

‣ visitField, visitTemp, vs. visitDef, 
visitVar: can’t be combined

2. Predicate-based discrimination
‣ isDef, isVar, isField, isTemp: easy to 

combine
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Instead of...

    method visitArray(v) -> Boolean { 
        ... 
    } 
    method visitVarDec(v) -> Boolean { 
        ... 
    } 
    method visitDefDec(v) -> Boolean { 
        .. 
    }
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Prefer:

    method visitNode(v) -> Boolean { 
        if (v.isArray) then {  
            ... 
        } elseif (v.isVarDec) then { 
            ... 
        } elseif (v.isDefDec) then { 
            ... 
        }  

 ... 
    }
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Principles
1. The AST must provide access to exact 

source-code ranges
2. Information deducible by the compiler 

should be accessible through the AST
1. does not imply that it’s pre-computed

3. Provide predicates to distinguish 
syntactic elements; don’t force the dialect 
writer to use a visitor
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Questions

• Should we even allow the dialect writer 
to write a visitor?

• Is abstraction important?  Or is an AST 
just a data structure?
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