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Boilerplate alert!

Manipulating abstract syntax with binding can be a chore.

Whenever one creates a new language, one must typically implement:
I substitution, α-equivalence, free names, – (all representations)
I opening / closing, shifting, – (some representations)
I converting between representations...

This boilerplate code is known as nameplate (Cheney).

It is large, boring, error-prone.

It does not seem easily reusable, as it is datatype-specific.



Fighting boilerplate!

In this talk & paper:

A way of getting rid of nameplate, in OCaml, which

I supports multiple representations of names and conversions between them,
I supports complex binding constructs,
I is modular and open-ended, that is, user-extensible,
I relies on as little code generation as possible.

Based on a combination of auto-generated visitors and library code.

I visitors, an OCaml syntax extension (released);
I AlphaLib, an OCaml library (at a preliminary stage).



Wait! Isn’t this a solved problem already?

Several Haskell libraries address this problem: FreshLib, Unbound, Bound...
They exploit Haskell’s support for generic programming (SYB, RepLib, ...)

Cool stuff can be done in Coq (Schäfer et al., 2015) and Agda (Allais et al., 2017).

In the OCaml world:

I Cαml (F.P., 2005), an ad hoc code generator; monolithic, inflexible.
I Yallop ports SYB to MetaOCaml+implicits: next talk! The way of the future?

– this talk: making do with vanilla OCaml.



Visitors



Generating a “map” visitor, in a nutshell
Annotating a type definition with [@@deriving visitors { ... }]...

type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "map" }]

... causes a visitor class to be auto-generated:

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
EAdd (r0 , r1)

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end
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Using a “map” visitor, in a nutshell

Inherit a visitor class and override one or more methods:

let optimize : expr -> expr =
let v = object (self)

inherit [_] map
method ! visit_EAdd env e1 e2 =

match self# visit_expr env e1 ,self# visit_expr env e2 with
| EConst 0, e (* 0 + e = e *)
| e, EConst 0 -> e (* e + 0 = e *)
| e1 , e2 -> EAdd (e1 , e2)

end in
v # visit_expr ()

No changes to this code are needed when more expression forms are added.



Visiting preexisting / parameterized types

Integers and lists can be visited, too.

type expr =
| EConst of int
| EAdd of expr list
[ @@deriving visitors { variety = "map" }]

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 =
let r0 = self# visit_list (self# visit_expr ) env c0 in
EAdd r0

method visit_expr env this = ...
end

A visitor can be “taught” to traverse a data structure!

a preexisting
type
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Visitors – summary

Although they follow fixed patterns, visitors are quite versatile.

They are customizable and composable.

More fun with visitors:
I visitors for open data types and their fixed points (link);
I visitors for hash-consed data structures (link);
I iterators out of visitors (link).

In the remainder of this talk:

I Traversing abstract syntax with binding.

http://gallium.inria.fr/~fpottier/visitors/manual.pdf#section.3
http://gallium.inria.fr/~fpottier/visitors/manual.pdf#subsection.3.2
http://gallium.inria.fr/blog/from-visitors-to-iterators/


Visitors Unchained



Traversing syntax with binding

For modularity, it seems desirable to distinguish three concerns:

1. Describing a binding construct.

2. Describing an operation on terms.
I usually specific of one representation of names and binders,
I sometimes specific of two such representations, e.g., conversions.

3. The end user should be insulated from this complexity.

– 1 & 2 are part of AlphaLib.





end
user

operations
specialist

binder
maestro



The end user



The end user

The end user describes the structure of ASTs in a concise, declarative style.

For example, this is the syntax of the λ-calculus:

type (’bn , ’fn) term =
| TVar of ’fn
| TLambda of (’bn , (’bn , ’fn) term) abs
| TApp of (’bn , ’fn) term * (’bn , ’fn) term

[ @@deriving visitors
{ variety = "map"; ancestors = [" BindingForms .map"] }]

The type (’bn, ’term) abs represents an abstraction of one name in one term.

The end user gets a visitor for free.

He gets multiple representations of names:

type raw_term = (string , string ) term
type nominal_term = (Atom.t, Atom.t) term
type debruijn_term = (unit , int) term
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The binder maestro

The maestro writes the module BindingForms. (Part of AlphaLib.)

He defines binding constructs and teaches visitors how to traverse them.

In memory, an abstraction of one name in one term is just a pair:

type (’bn , ’term) abs = ’bn * ’term

Traversing it requires extending the environment — roughly like this:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method visit_abs _ visit_ ’term env (x1 , t1) =

let env , x2 = self# extend env x1 in (* extend env with x1 *)
let t2 = visit_ ’term env t1 in (* then visit t1 *)
(x2 , t2)

end

There is a catch, though – what on earth should the method extend do?



The catch

The binder maestro:

I does not know what operation is being performed,
I does not know what representation(s) of names are in use,
I therefore does not know the types of names and environments,
I let alone how to extend the environment.

What he knows is where and with what names to extend the environment.



A deal

The binder maestro agrees on a deal with the operations specialist.

“I tell you when to extend the environment; you do the dirty work.”

The binder maestro calls a method which the operations specialist provides:

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

This is a bare-bones API for describing binding constructs.



The operations
specialist



Implementing an operation

To implement one operation on terms, the specialist decides:

I the types of names and environments,
I how to extend the environment when entering the scope of a bound name,
I what to do at a free name occurrence.



Example: converting raw terms to nominal terms

The specialist writes the module KitImport. (Also part of AlphaLib.)

type env = Atom.t StringMap .t (* a map of strings to atoms *)
let empty : env = StringMap . empty
exception Unbound of string
class [’self] map = object (_ : ’self)

(* At a binder , generate a fresh atom and extend the env. *)
method extend (env : env) (x : string ) : env * Atom.t =

let a = Atom. fresh x in
let env = StringMap .add x a env in
env , a

(* At a name occurrence , look up the environment . *)
method visit_ ’fn (env : env) (x : string ) : Atom.t =

try StringMap .find x env
with Not_found -> raise ( Unbound x)

end



Done? Almost.



Gluey business

The end user must work a little bit to glue everything together...

For each operation, the end user must write about 5 lines of glue code:

let import_term (t : raw_term ) : nominal_term =
( object

inherit [_] map (* generated by visitors *)
inherit [_] KitImport .map (* provided by AlphaLib *)

end) # visit_term KitImport . empty t

As there are many operations, this is unpleasant.

Functors can help in simple cases, but are not flexible enough.

I use C-like macros, but this is ugly. Is there a better way?



Conclusion



Takeaway thoughts

Generated visitors allow a limited form of generic programming.

Visitor classes are partial, composable descriptions of operations.

Visitors can traverse abstract syntax with binding.

I Syntax, binding forms, operations are described separately.
I Syntax is described in a declarative style.
I In the paper: towards a DSL for binding constructs.



Limitations

Not everything is perfect:

I Three visitor classes are needed: map, iter, iter2.
I The end user must use a C-like macro that I provide.
I Some binding constructs cannot be implemented at all.

I e.g., nonlinear patterns – (not representation-independent)
I Some binding constructs are not easily supported in the high-level DSL.

I e.g., Unbound’s Rec – (seems to require multiple subtraversals)
I More practical experience is needed. (Guinea pigs Users welcome!)



Backup



Features of the visitors package

I Several built-in varieties of visitors: iter, map, . . .
I Arity two, too: iter2, map2, . . .
I Generated visitor methods are monomorphic (in this talk),
I and their types are inferred.
I Visitor classes are nevertheless polymorphic.
I Polymorphic visitor methods can be hand-written and inherited.



Support for parameterized data types

Visitors can traverse parameterized data types, too.

I But: how does one traverse a subtree of type ’a?

Two approaches are supported:

I declare a virtual visitor method visit_’a
I pass a function visit_’a to every visitor method.

I allows / requires methods to be polymorphic in ’a
I more compositional

In this talk: a bit of both (details omitted...).



Predefined visitor methods

The class VisitorsRuntime.map offers this method:

class [’self] map = object (self)
(* One of many predefined methods : *)
method private visit_list : ’env ’a ’b .

(’env -> ’a -> ’b) -> ’env -> ’a list -> ’b list
= fun f env xs ->

match xs with
| [] ->

[]
| x :: xs ->

let x = f env x in
x :: self # visit_list f env xs

end

This method is polymorphic, so multiple instances of list are not a problem.



Visiting an abstraction

The class BindingForms.map offers the method visit_abs:

class virtual [’self] map = object (self : ’self)
(* A visitor method for the type abs. *)
method private visit_abs :

(* The method ’s type: *)
’term1 ’term2 . _ ->
(’env -> ’term1 -> ’term2 ) ->
’env -> (’bn1 , ’term1 ) abs -> (’bn2 , ’term2 ) abs
(* The method ’s code: *)

= fun _ visit_ ’term env (x1 , t1) ->
let env , x2 = self# extend env x1 in
let t2 = visit_ ’term env t1 in
x2 , t2

(* A hook that defines how to extend the environment . *)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2

end

This method:

I takes a visitor function for terms, an environment,
I an abstraction, i.e., a pair of a name and a term, and
I returns a pair of a transformed name and a transformed term.
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Defining new binding constructs

There are many binding constructs out there.

I “let”, “let rec”, patterns, telescopes, ...

We have seen how to programmatically define a binding construct.

Can it be done in a more declarative manner?



A domain-specific language

Here is a little language of binding combinators:

t ::= . . . sums, products, free occurrences of names, etc.
| abstraction(p) a pattern, with embedded subterms

| bind(p, t) — sugar for abstraction(p × inner(t))

p ::= . . . sums, products, etc.
| binder(x) a binding occurrence of a name
| outer(t) an embedded term
| rebind(p) a pattern in the scope of any bound names on the left

| inner(t) — sugar for rebind(outer(t))

Inspired by Cαml (F.P., 2005) and Unbound (Weirich et al., 2011).
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Example use: telescopes

A dependently-typed λ-calculus whose Π and λ forms involve a telescope:

# define tele (’bn , ’fn) tele
# define term (’bn , ’fn) term
(* The types that follow are parametric in ’bn and ’fn: *)

type tele =
| TeleNil
| TeleCons of ’bn binder * term outer * tele rebind

and term =
| TVar of ’fn
| TPi of (tele , term) bind
| TLam of (tele , term) bind
| TApp of term * term list

[ @@deriving visitors {
variety = "map";
ancestors = [" BindingCombinators .map"]

}]



Implementation

These primitive constructs are just annotations:

type ’p abstraction = ’p
type ’bn binder = ’bn
type ’t outer = ’t
type ’p rebind = ’p

Their presence triggers calls to appropriate (hand-written) visit_ methods.



Implementation

While visiting a pattern, we keep track of:

I the outer environment, which existed outside this pattern;
I the current environment, extended with the bound names encountered so far.

Thus, while visiting a pattern, we use a richer type of contexts:

type ’env context = { outer : ’env; current : ’env ref }

— Not every visitor method need have the same type of environments!

With this in mind, the implementation of the visit_ methods is straightforward...



Implementation

This code takes place in a map visitor:

class virtual [’self] map = object (self : ’self)
method private virtual extend : ’env -> ’bn1 -> ’env * ’bn2
(* The four visitor methods are inserted here ... *)

end

1. At the root of an abstraction, a fresh context is allocated:

method private visit_abstraction : ’env ’p1 ’p2 .
(’env context -> ’p1 -> ’p2) ->
’env -> ’p1 abstraction -> ’p2 abstraction

= fun visit_p env p1 ->
visit_p { outer = env; current = ref env } p1



Implementation

2. When a bound name is met, the current environment is extended:

method private visit_binder : _ ->
’env context -> ’bn1 binder -> ’bn2 binder

= fun visit_ ’bn ctx x1 ->
let env = !( ctx. current ) in
let env , x2 = self# extend env x1 in
ctx. current := env;
x2



Implementation

3. When a term that is not in the scope of the abstraction is found,
it is visited in the outer environment.

method private visit_outer : ’env ’t1 ’t2 .
(’env -> ’t1 -> ’t2) ->
’env context -> ’t1 outer -> ’t2 outer

= fun visit_t ctx t1 ->
visit_t ctx. outer t1



Implementation

4. When a subpattern marked rebind is found,
the current environment is installed as the outer environment.

method private visit_rebind : ’env ’p1 ’p2 .
(’env context -> ’p1 -> ’p2) ->
’env context -> ’p1 rebind -> ’p2 rebind

= fun visit_p ctx p1 ->
visit_p { ctx with outer = !( ctx. current ) } p1

This affects the meaning of outer inside rebind.
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