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let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
let print : String ! Unit = ... 
print(intToString(salary)) 

Disney and Flanagan. “Gradual Information Flow Typing” 



Scenario

3

let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
let print : String ! Unit = ... 
print(intToString(salary)) 

Low Security 
Data



Scenario

4

let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
let print : String ! Unit = ... 
print(intToString(salary)) 

Low Security 
Data High Security 

Data



Scenario

5

let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
let print : String ! Unit = ... 
print(intToString(salary)) 

Low Security 
Data High Security 

Data

Low Security 
Channel



Scenario

6

let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
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Security Leak!! Unchecked Semantic Error
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A Lattice Model of 
Secure Information 
Flow 
Dorothy E. Denning 
Purdue University 

This paper investigates mechanisms that guarantee 
secure information flow in a computer system. These 
mechanisms are examined within a mathematical 
framework suitable for formulating the requirements 
of secure information flow among security classes. 
The central component of the model is a lattice 
structure derived from the security classes and justified 
by the semantics of information flow. The lattice 
properties permit concise formulations of the security 
requirements of different existing systems and facilitate 
the construction of mechanisms that enforce security. 
The model provides a unifying view of all systems 
that restrict information flow, enables a classification 
of them according to security objectives, and suggests 
some new approaches. It also leads to the construction 
of automatic program certification mechanisms for 
verifying the secure flow of information through a 
program. 
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1. Introduction 

The security mechanisms of most computer  systems 
make no at tempt to guarantee secure information flow. 
"Secure information flow," or simply "security," 
means here that no unauthorized flow of information is 
possible. In the common example of  a government or 
military system, security requires that processes be 
unable to transfer data from files of  higher security 
classifications to files (or users) of lower ones: not only 
must a user be prevented from directly reading a file 
whose security classification exceeds his own, but he 
must be inhibited from indirectly accessing such in- 
formation by collaborating in arbitrarily ingenious 
ways with other users who have authority to access the 
information [19]. 

Most  access control mechanisms are designed to 
control immediate  access to objects without taking 
into account information flow paths implied by a 
given, outstanding collection of access rights. Con- 
temporary  access control mechanisms, such as are 
found in Multics [18, 20] or Hydra  [24], have demon- 
strated their abilities to enforce the isolation of processes 
essential to the success of  a multitask system. These 
systems rely primarily on assumptions of  "trustworthi-  
ness" of  processes for secure information flow among 
cooperating processes. Though it is mainly of theoretical 
interest, Harr ison et al. [12] have recently demonstrated 
that  in general it may be undecidable whether an 
access right to an object will " leak"  to a process in a 
system whose access control mechanism is modeled 
by an access matrix [11, 15]. 

In our research into this problem, we sought to find 
suitable and viable restrictions according to which the 
security of  a system would not only be decidable, but 
simply so. Our results show that suitable constraints do 
indeed exist, and moreover  within the context of  a 
richly structured model. 
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2. The Model 

2.1 Description 
An information flow model FM is defined by 

F m  = (N, P, SC, e ,  ~). 
N = {a, b , . . . }  is a set of  logical storage objects or 
information receptacles. Elements of N may be files, 
segments, or even program variables, depending on the 
level of  detail under consideration. Each user of  the 
system may also be regarded as an object. P = 
{p, q , . . . }  is a set of processes. Processes are the active 
agents responsible for all information flow. 

Communications May 1976 
of Volume 19 
the ACM Number 5 

[CACM 1976]
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Zdancewic. “Programming Languages for Information Security”

Classification Permitted Readers
`1 4 `2
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Low-security information may flow  
to high-security contexts
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Zdancewic. “Programming Languages for Information Security”

High-security information may not flow  
to low-security contexts
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Int �! Int

Simple Types
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IntH �!L IntH

Security-Indexed Types
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Security Typing
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Natural Subtyping Structure

IntL <: IntH

IntH �!L IntL <: IntL �!H IntH
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Higher Security

Lower Security



Back to Scenario
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let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
let print : String ! Unit = ... 
print(intToString(salary)) 

Simple Typing
Silent Leak
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let age : IntL = 31L 
let salary : IntH = 58000H 
let intToString : IntL !L StringL = ... 
let print : StringL !L UnitL = ... 
print(intToString(salary)) 

Type Error!

Security Typing
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fun b : BoolH => 
  let tt : BoolL = true
  let ff : BoolL = false
  if b then tt else ff

High-Security data can affect control flow of a program



Implicit Information Flows

21

fun b : BoolH => 
  let tt : BoolL = true
  let ff : BoolL = false
  if b then tt else ff

What’s it’s 
Type?

High-Security data can affect control flow of a program



Implicit Information Flows
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fun b : BoolH => 
  let tt : BoolL = true
  let ff : BoolL = false
  if b then tt else ff

What’s it’s 
Type?

Where is it 
safe to use?

High-Security data can affect control flow of a program
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let r : BoolL ref = ref tt
fun b : BoolH => 
  if b then ()L else (r := ff; ()L) 

High-Security information can escape 
 via mutable state
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let r : BoolL ref = ref tt
fun b : BoolH => 
  if b then ()L else (r := ff; ()L) 

High-Security information can escape 
 via mutable state
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How Can My Local Variables Behave?

�;⌃; ` ` t : T



Security Typing Judgment
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How Can Mutable References Behave?

How Can My Local Variables Behave?

�;⌃; ` ` t : T



What Security Information can 
leak through Assignment

Security Typing Judgment
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How Can Mutable References Behave?

How Can My Local Variables Behave?

�;⌃; ` ` t : T



Security Typing Judgment
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How Does t Behave?

�;⌃; ` ` t : T



Carpal Typing Syndrome
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let age : IntL = 31L 
let salary : IntH = 58000H 
let intToString : IntL !L StringL = ... 
let print : StringL !L UnitL = ... 
print(intToString(salary)) 

Type Error!

Security Typing



Secure All the Things!
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let age : IntL = 31L 
let salary : IntH = 58000H 
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Security Typing
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Gradual Typing

Dynamic 
Typing

Simple 
Typing



Gradual Typing!
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Simple 
Typing

Security 
Typing

Security

Disney and Flanagan. “Gradual Information Flow Typing” 



Gradual Typing!

34

Simple 
Typing

Security 
Typing

Security

Fennell and Thiemann, Gradual Security Typing with References



Simple Typing
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let age : Int = 31 
let salary : Int = 58000 
let intToString : Int ! String = ... 
let print : String ! Unit = ... 
print(intToString(salary)) 



“Gradually Secure” Program
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let age : Int = 31 
let salary : IntH = 58000 
let intToString : Int ! String = ... 
let print : StringL ! Unit = ... 
print(intToString(salary)) 

Runtime Error!

High Security 
Data

Low Security 
Channel



“Gradually Secure” Program
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“Gradually Secure” Program
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let age : Int = 31 
let salary : IntH = 58000 
let intToString : IntL ! String = ... 
let print : StringL ! Unit = ... 
print(intToString(age)) 

All G
ood!



What do types tell us?
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let mix : IntL -> IntH -> IntL =
  fun pub priv => 
    ...

Local Reasoning Principles???



What do types tell us?
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Take 1: Upper-bounds on security tags

Disney and Flanagan. “Gradual Information Flow Typing” 

Weak security guarantee

Proof Technique: Wright-Felleisen Type Safety

let mix : IntL -> IntH -> IntL =
  fun pub priv => 
    ...

Fennell and Thiemann, Gradual Security Typing with References

Constrains any individual run of the code



What do types tell us?
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Take 2: Non-interference

Strong security guarantee
Proof Technique: Logical relations

let mix : IntL -> IntH -> IntL =
  fun pub priv => 
    ...

Modular, compositional, static reasoning about security
Heintze and Riecke. The Slam Calculus: Programming with Secrecy and Integrity

Constrains relationship among runs of the code
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Take 2: Non-interference

Strong security guarantee
Proof Technique: Logical relations

let mix : IntL -> IntH -> IntL =
  fun pub priv => 
    ...

Modular, compositional, static reasoning about security
Heintze and Riecke. The Slam Calculus: Programming with Secrecy and Integrity

Constrains relationship among runs of the code
https://popl18.sigplan.org/event/popl-2018-papers-keynote-milner-lecture

https://popl18.sigplan.org/event/popl-2018-papers-keynote-milner-lecture


What do types tell us?
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Take 2: Non-interference
MISSION: achieve this richer meaning

let mix : IntL -> IntH -> IntL =
  fun pub priv => 
    ...

Modular, compositional, gradual reasoning about security

Strong security guarantee



Gradual Security
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` 2 Label

Unknown 
Label

g 2 GLabel ::= ` | ?
Label ✓ GLabel



“Gradually Secure” Program
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let age : Int = 31 
let salary : IntH = 58000 
let intToString : IntL ! String = ... 
let print : StringL ! Unit = ... 
print(intToString(age)) 



“Gradually Secure” Program
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let age : Int? = 31? 
let salary : IntH = 58000? 
let intToString : IntL !? String? = ... 
let print : StringL !? Unit? = ... 
print(intToString(age)) 

Gradual Language Embeds  
Simply Typed and Security Typed Languages

Desugared
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Consistent  
Label Ordering
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g1 e4 g2
v v
`1 4 `2
for some `1, `2



Consistent Ordering
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Conservatively Extends  
Label Ordering

L e4 H

H 6e4 L

L e4 L

? e4 L

L e4 ?



Consistent “Ordering”
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Not really an order

L e4 H

H 6e4 L

L e4 L

? e4 L

L e4 ?



Gradual  Types

52

U 2 GType Just add  
gradual labels!

BoolL
IntH

Bool?

Type ✓ GType



Gradual  Types

53

Type Precision U1 v U2
Covariant on 

function types!

Int? !? Bool?

IntL !? Bool? Int? !? BoolH

Int? !? Bool?

IntL !? BoolH

IntL !? Bool? Int? !? BoolH



Gradual  Types
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Consistent  
Subtyping

U1 . U2

Conservatively  
extends subtyping 

(but not really a  
subtyping relation)

v

for some T1, T2

if and only if v
T1 <: T2



Consistent Subtyping

Conservatively Extends  
Subtyping

IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH
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Consistent Subtyping
IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH
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Not

Transitive!



Consistent Subtyping
IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH
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Not

Transitive!

Does NOT denote 
safe substitutibility



Consistent Subtyping
IntL . IntH

IntL 6. BoolH

IntH 6. IntL

IntH . Int?

Int? . IntL

Int? 6. BoolH
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Not a Subtyping 
Relation!

Not

Transitive!

Does NOT denote 
safe substitutibility



Lifting Typing Rules
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�;⌃; `
c

` t1 : T11
`

0
!

`

x

T12 �;⌃; `
c

` t2 : T2

T2 <: T11 `
c � `x 4 `0

�;⌃; `
c

` t1 t2 : T12 � `x

�;⌃; g
c

` et1 : U11
g0!g

x

U12 �;⌃; g
c

` et2 : U2

U2 . U11 ^g
c � gx 4 g0

�;⌃; g
c

` et1 et2 : U12 e� gx



Dynamic Semantics:  
Runtime Type Safety Argument
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t 7�! t0

D D0=)

Garcia et al. Abstracting Gradual Typing (POPL 2016)

` t : T ` t0 : TSome extra 
complications



Noninterference (roughly)
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Syntactic Type Judgment

Semantic Type Judgment

�;⌃; g ` t : U =) �;⌃; g |= t : U

Semantic Type Soundness



Theses
• Types let you reason about program fragments 

• Type Systems are not their Type Checkers 

• Type Systems are for reasoning 

• Type Checkers are for enforcement 

• Dynamic Checks are for enforcement too!
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Conclusion
• Gradual typing is relative: not just for “scripting” 

• Gradual typing conservatively extends two 
related languages 

• Syntax 

• Dynamic Semantics 

• Semantics of types
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