
Immediate mode with
immutable data

Tijs van der Storm
storm@cwi.nl / @tvdstorm

mailto:storm@cwi.nl

Immediate mode?
• Immediate mode vs retained mode UI

• Stateless drawing vs creating a stateful UI object
tree

• No inversion of control (callbacks) or dependency
networks; “straight line code”

• Origin in game development, now very popular:
React, Elm etc. (virtual dom)

Immutable data?
• Functional programming!!! ;)

• “Copy on write data”

• Avoids the “goto of memory”: aliasing

• Snapshotting, time travel, undo etc. become easier.

• -> Elm

view: Model -> Html

magic
happens
here…

update: Msg -> Model -> Model

event

Browser

view: Model -> Html

magic
happens
here… Browser

“Twostones”

more
magic
here…

 Update function is
implied by the
view definition

A simple counter app
def app(m)
 div {
 button { out "+" on click m.count = m.count + 1 }
 out m.count
 button { out "-" on click m.count = m.count - 1 }
 }

model
 {count: 0}

The TwoStones DSL
• Syntactically partitioned:

• View code = functions computing HTML trees

• “on” blocks may “update” the model

• Instead of 2 functions (view/update), have 2
semantics of the same program

• “render”: draw the HTML

• “handle”: interpret an event into model update

Immediate Mode with Immutable Data

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

University of Groningen (RUG)
storm@cwi.nl

ABSTRACT
Immediate mode UI programming is based on continually drawing
the UI in a render loop, handling events in between frames using
ordinary control-flow. This supports straightforward understanding
and debugging of UI code, without inversion of control. In this paper
I present TwoStones, a simple DSL for immediate mode web-based
UI programming in a purely functional style: it presumes a single,
immutable application model which is updated functionally through
the use of cursors (a kind of zipper). Relying only on immutable
data means that time-travel debugging and undo-facilities are easy
to implement. For exposition purposes, the semantics of TwoStones
is first decomposed in two parts: one semantics for rendering, and
one semantics for event handling. Finally, they are merged again for
better performance. A number of examples show the potential of the
approach.

KEYWORDS
Web programming, immediate mode, immutable data
ACM Reference format:
Tijs van der Storm. 2017. Immediate Mode with Immutable Data. In
Proceedings of ProWeb 2017: Programming Technology for the Future Web,
Brussels, Belgium, April 2017 (ProWeb’17), 6 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
One perceived benefit of immediate mode UI frameworks is that they
do not rely on inversion of control (through listeners or call-backs),
or require the (incremental) evaluation of complex dependency net-
works. Events are handled using ordinary control-flow instead,
which makes such programs easier to understand and debug. There
is a more direct relation between the structure of the code and what
gets drawn on the screen.

An immediate mode UI program is executed in a render loop that
“continually” draws the UI on the screen. Changes to the application
state are enacted during rendering itself, depending on events trig-
gered by user actions. In web application programming this style is
becoming popular again with frameworks such as Facebook React1

and languages like Elm2. In this domain the immediate mode aspect
is simulated by “continually” constructing a virtual DOM represen-
tation of the UI instead of directly drawing on the screen, and then
1https://facebook.github.io/react/
2http://www.elm-lang.org

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ProWeb’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

patching the actual DOM based on the difference between the old
and new view.

The Elm architecture3 adds a further distinction to the model by
separating an application in two functions: a view function (which
takes the application model and produces a rendering), and an up-
date function (which takes a message resulting from an event, the
current model, and produces a new version of the model). These
two functions are evaluated in alternating fashion, giving a natural
model of stepping through the evolution of the application’s state.

Although the two functions promote separation of concerns be-
tween logic and presentation, it creates significant cognitive distance
as well: there is no locality between modifications to the model and
the context of rendering that “produced” the messages. As a result,
the programmer needs to “reset” her brain whenever she is switching
from view programming to model updating, since both functions
conceptually start at the top.

The TwoStones language approaches this in a different way. It
does not require the user to define separate functions for view and
update, but instead facilitates the disciplined interleaving of both
concerns. The lock-step evaluation model of Elm can then be recov-
ered by having two, separate semantics for this language, one for
rendering and one for handling. To make this more concrete, here
are two function signatures describing the two semantics. The first
is “rendering”:

render : Program⇥Model ! Node

So the render semantics takes a program and an application model,
and produces an HTML node, which can subsequently be rendered
in a browser.

The handling concern is captured by the following signature:

handle : Program⇥Model ⇥Event ! Model

In this case, the function takes a program, a model, and an event
value, and produces an updated model.

A UI program then consists of an (infinite) top-level driver loop
calling render and handle in alternating fashion, like this:

view0 = render(p, m0)
... event e0 happens ...
m1 = handle(p, m0, e0)
view1 = render(p, m1)
... etc.

The sequence starts with rendering an initial model m0. Then
some event e0 happens, which is fed into handle. The function
handle is invoked with the original model (m0), and produces the
new model (m1). The new model is then rendered producing the new
view view1, and the cycle repeats. As a result, the programmer only
writes a single program, but may still enjoy the benefits of functional
programming with immutable values.

3https://guide.elm-lang.org/architecture/

Two Semantics

• Render: takes a model and draws the UI  
(marks elements with event ids)

• Handle: takes a model and an event, “skips” all
rendering, and constructs a new model based on
the triggered event block. 
(finds “on” blocks via event id)

Under the hood: cursors
• Variant of Huet’s Zippers

• “FP equivalent of a pointer to a memory location”

• While traversing model, maintain way to “put back”

• In TwoStones, all expressions are evaluated to
cursors.

• Data binding with immutable data

eval(e.y) = hv[y],lx.put(v[y 7! x])i
where eval(e) = hv,puti

eval(e0[e1]) = hv0[v1],lx.put(v0[v1 7! x])i
where eval(e0) = hv0,puti
and eval(e1) = hv1, i

Benefits (?)
• No inversion of control

• No manual id management needed

• Compositional

• 1-to-many, many-to-1, higher-order

• Time travel, undo, etc.

Limitations (?)

• Only data binding

• Only one update per event

• The model must be a “view model”

• Tricky to embed in existing languages  
(requires proxies, macros, …)

Demo time

twostones.js
• Embedding into Javascript

• ± 300 SLOC framework code

• Closures for nesting

• Uses immutable.js as model representation

• Uses proxies to simulate cursors

Conclusion
• Immediate mode: ordinary control-flow

• Immutable data: time travel, undo etc.

• TwoStones: 1 language, 2 semantics

• Cursors under the hood to update app model

• Compositional UI programming with just functions

