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Problem statement

- More and better tool support needed for software

evolution
- traceability management
- version control (e.g., software merging)
- impact analysis
- change propagation
- consistency maintenance
- model transformation
- co-evolution
- analysing release histories
- a "theory of software evolution"

- Formalisms can be helpful for some of these tools
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Case study: Graph transformation

- Formalism based on
- graphs: o represent software entities
- graph ftransformation: to represent software evolution

- offers many theoretical results that can help during analysis
* type graph, negative application conditions, parallel and
sequential (in)dependence, confluence, critical pair analysis

- Experiment: use graph transformation theory to
detect and resolve structural conflicts when

refactorings are applied in parallel
- Use AGG tool for experiments
- in collaboration with Gabi Taentzer, Berlin
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Case study: Graph transformation

- Two concrete scenarios

refactoring Application refactoring Application
Vggitg]a:eo ————— vesrgif(t)vrﬁr(?l a Framework = = = = = Framework
' ' version 1 version 2
: refactoring customisatio:/ Yustomisation
\ 4
Software Concrete Concrete
version 1.1b application A application B
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Case study: AGG
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Case study: critical pair analysis

- Use critical pair analysis in AGG

-T;and T, form a critical pair if
- they can both be applied to the same initial graph G but
- applying T, prohibits application of T, and/or vice versa
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Case study: parallel refactorings

- Compute critical pairs for 9 representative
refactorings
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Case study: parallel refactoings

- Perform confluence analysis to resolve detected
conflicts
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Case study: parallel refactoings

- To do

- Improve performance of critical pair analysis algorithm
- Find out to which extent conflict resolution can be
automated

- Reduce set of critical pairs
- e.g. by taking into account transitive closure of inheritance

- Investigate distinction between symmetric and asymmetric
conflicts
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Case study: framework customisation

. Customisation conflicts due to framework

refactoring
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Case study: framework customisation

. Customisation conflicts due to framework
refactoring
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Case study: Open question

. How to deal with semantic conflicts?
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Case study: another potential scenario

- Use some tool to detect "bad smells"
- opportunities for refactoring
- can be used to propose a list of possible
refactorings that can be applied in the same

context
- cf. Mens&Tourwé, CSMR 2003 and IWPSE 2003

- Critical pair analysis can be used to
- identify which of the refactorings in this list are in
conflict
- suggest a non-conflicting sequence of refactorings
that removes the detected bad smells
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Example: Refactoring formalisms

- Question
-which formalisms can be used to improve tool
support for refactoring?

- Answers
- Graph transformation
- Logic formalisms
- description logic, fuzzy logic, femporal logic, ...
- Software metrics
- Formal concept analysis
-Program slicing
- Denotational semantics
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Fundamental Research Questions

- possible uses of graph transformation to assist with

refactoring ?

- How to (de)compose refactorings ?

- How to detect and resolve conflicts due to refactorings ?
- critical pair analysis

- How to deal with co-evolution ?
* triple (quadruple) graph grammars

- How to guarantee "behaviour preserving" ?

- How to guarantee "structure improving" ?
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Fundamental Research Questions

- other formalisms to assist with refactoring?
- formal concept analysis
- program slicing
- description logics
- What is behaviour ? Behaviour preserving ?
- real-time systems (time); embedded systems (power & memory);
safety critical systems (liveness, ...)
- What are good program invariants ? How to express them ?
- What is structure ? Structure improving ?
- How to measure impact/effect of refactoring on software quality ?
- Co-evolution

- How to address consistency maintenance and change propagation ?
* code < design < architecture < requirements

- How to refactor at higher abstraction levels ?
* UML models, design patterns, architectures, components
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Practical Questions

- How to measure complexity of refactorings ?
- Comparing different refactorings in same formalism
- Comparing same refactoring in different formalisms

- computational complexity of preconditions
- computational complexity of applying the refactoring
- readability/understandability of the refactoring

- How can we determine where and why to refactor ?
- bad smells

- Where does refactoring fit in the development
process ?

- How to combine refactoring with other techniques ?
- design patterns, application frameworks, aspect-oriented
programming, generative programming, ...
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Opportunities for collaboration

- Applying refactorings to UML models
- Fits in the MDA model transformation context

- Addresses theoretical and practical aspects
* Theoretical
- deciding on an appropriate formalism ; subset of UML ;
definition of behaviour
* Practical
- developing tools / plug-ins for model refactoring

- Opportunities
- Suggest as a topic for ERCIM Strategy 2004

- Propose a small-scale European project (possible with support

from ERCIM)
- academic partners: UA, UMH, CWT, ... ?
* industrial partners ?
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