2nd Belgian-Dutch workshop on
Software Evolution

BENEVOL 2004

8-9 July 2004
University of Antwerp
Belgium

Problem statement

- More and better tool support needed for software

evolution
- traceability management
- version control (e.g., software merging)
- impact analysis
- change propagation
- consistency maintenance
- model transformation
- co-evolution
- analysing release histories
- a "theory of software evolution"

- Formalisms can be helpful for some of these tools

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp

Critical pair analysis
of graph transformations

for software refactoring

Tom Mens
Service de Génie Logiciel
Université de Mons Hainaut

UMH

Case study: Graph transformation

- Formalism based on
- graphs: o represent software entities
- graph ftransformation: to represent software evolution

- offers many theoretical results that can help during analysis
* type graph, negative application conditions, parallel and
sequential (in)dependence, confluence, critical pair analysis

- Experiment: use graph transformation theory to
detect and resolve structural conflicts when

refactorings are applied in parallel
- Use AGG tool for experiments
- in collaboration with Gabi Taentzer, Berlin

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 4

Case study: Graph transformation

- Two concrete scenarios

refactoring Application refactoring Application
Vggitg]a:eo ————— vesrgif(t)vrﬁr(?l a Framework = = = = = Framework
' ' version 1 version 2
: refactoring customisatio:/ Yustomisation
\ 4
Software Concrete Concrete
version 1.1b application A application B
© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 5

Case study: AGG

000 AGG V1.2.1

File Edit Mode Transform Parser Analyzer Preferences Help

Z B R M X K
ZAN BB gy grN ERARMNAE - ME= ¢

%* Graph

[Parameter

1:‘ [Em]Type_Craph - MNode Type Edge Type
’7 ’7— accesses

MoveVariable

l@: WariableAbsent =

PullUpVariable noSetter EncapsulateVariable of Refactorings

. "B L :
l@]ﬁ AbsentVariable contains |Method
2:Class 2:Class . name="sef'+v

EncapsulateVariable visibility="public" contains

HEC noSetter pontains \

1@: noGetter 4:contains W.contains
' ' Method Parameter
MoveMethod Method e e T name="p"

get"+v

l@: MethodAbsent name=s - _visibility="public"
[L=E] PullUupMethod v
L

HEC AbsentMethod TVariable 5:type 1:Variable

[L=R] CreateSuperclass name=v —I—pm _ |name=sv
3Class|

l@: UniqueClassName visibility="public" visibility="private"

4

L4
[L=R| RenameVariable 1 A TSN

HEC VariableAbsent
RenameMethod

! Attribute Context Current Attribute Customize |

HEC MethodAbsent
o Parameters and Variables Conditions
RenameClass

n

l@: UniqueClassName
AddLeafClass

ut Handler Type Name Expression
Java Expr String v

HEC isParentOfLeaf Java Expr String s

K Expression
- s.equals("set"+v)
) g.equals('get"+v}

10
0 o

ARE

"E

[
[

HEC UnigueClassName Java Expr String g
AddVariablelnLeafCla B .

l@: isLeaf r

l@: variableAbsent

AddMethodinLeafClas

]@.‘. isLeaf Tuple: Reset Member:| Delete || Evaluate Reset || Delete
L
- M "

Case study: critical pair analysis

- Use critical pair analysis in AGG

-T;and T, form a critical pair if
- they can both be applied to the same initial graph G but
- applying T, prohibits application of T, and/or vice versa

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp

Case study: parallel refactorings

- Compute critical pairs for 9 representative
refactorings

‘0606

|ﬁ Critical Pairs

first | second

1:
2:
3:
4:

=]

W

MoweVariable
PullUpVariable
EncapsulateVariable

MoveMethod

: PullUpMethod

: CreateSuperclass
: RenameVariable
: RenameMethod

: RenameClass

1: MoveV... 2: PullUp... 3: Encaps... 4: MoveM... 5: PullUp... &: CreateS...7: Renam... &: Renam... 9: Renam..

L3 X <+ X 2 N o N o N o Jq 2 QN 0
<+ X 2 X 2 N o N o N o J 2 J o0
2 X 2 X 2 X 2 X 2 M o N o J 1
o N o N 2 X 3 X 4+ N o N o J 2

o N o N 2 X + N 2 N o N o J 2 J
Lo A 1 J o N o JH 1 N 4 J o N 0
L X 1 X 1 N o N o N o Jg 2 JN 0
(o N o N o) : N 1 N o N o J 2 J
(o X o XN o X o X o J 3 J o X o)

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 8

Case study: parallel refactoings

- Perform confluence analysis to resolve detected
conflicts

Class Class . Variable
contains
name=d name=d »| name=a
/ \ Pull Up / \
—— — Variable —— ——
Generalization || Generalization - — — pp| | Generalization | | Generalization
Variable) Class Class) Variable Class Class . Variable
contains contains contains
name=a name=ci name=c2 name=a name=c1i name=c2 name=a
' Pull Up Remove |
* Variable Variable*
Variable . Class Variable . Class
contains contains
name=a |« name=d name=a |« name=d
/ \ Remove / \
- - Variable - .
Generalization Generalization | n — — — — — > Generalization Generalization
Variable) Class Class Class Class
contains
name=a |4¢—— name=ci name=c2 name=ci name=c2

Case study: parallel refactoings

- To do

- Improve performance of critical pair analysis algorithm
- Find out to which extent conflict resolution can be
automated

- Reduce set of critical pairs
- e.g. by taking into account transitive closure of inheritance

- Investigate distinction between symmetric and asymmetric
conflicts

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 10

Case study: framework customisation

. Customisation conflicts due to framework

refactoring

‘066
10: AddLe...11: AddV... 12: AddM... 13: Refine...first | second
: MoveVariable

: PullUpVariable

: EncapsulateVariable
: MoveMethod

: PullUpMethod

: CreateSuperclass

: RenameVariable

: RenameMethod

: RenameClass

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp

11

Case study: framework customisation

. Customisation conflicts due to framework
refactoring

Method . Class Method . Class
contains contains
name=m |« name=c name=n |« name=c
f Rename f
— Method .
Generalization L - = Generalization
Class Class
name=d name=d
RLfine Method
il*_eaf
Method . Class
contains
name=m |« name=c
Generalization
Method . Class
contains
name=m |« name=d

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp

12

Case study: Open question

. How to deal with semantic conflicts?

Shape
Shape Create Superclass ﬁ
- — -
ﬁ R Polygon
Rectangle Square | | Triangle Circle /7 [F \
| Rectangle Square | | Triangle Circle
fidd Leaf Class
\J
Shape
Parallellogram Rectangle Square | | Triangle | | Circle Ellipse
© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 13

Case study: another potential scenario

- Use some tool to detect "bad smells"
- opportunities for refactoring
- can be used to propose a list of possible
refactorings that can be applied in the same

context
- cf. Mens&Tourwé, CSMR 2003 and IWPSE 2003

- Critical pair analysis can be used to
- identify which of the refactorings in this list are in
conflict
- suggest a non-conflicting sequence of refactorings
that removes the detected bad smells

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 14

Formal foundations for
software evolution

Tom Mens

Software Engineering Lab
University of Mons-Hainaut
http://www.umh.ac.be/~genlog

UMH

Example: Refactoring formalisms

- Question
-which formalisms can be used to improve tool
support for refactoring?

- Answers
- Graph transformation
- Logic formalisms
- description logic, fuzzy logic, femporal logic, ...
- Software metrics
- Formal concept analysis
-Program slicing
- Denotational semantics

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp

16

Fundamental Research Questions

- possible uses of graph transformation to assist with

refactoring ?

- How to (de)compose refactorings ?

- How to detect and resolve conflicts due to refactorings ?
- critical pair analysis

- How to deal with co-evolution ?
* triple (quadruple) graph grammars

- How to guarantee "behaviour preserving" ?

- How to guarantee "structure improving" ?

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp

17

Fundamental Research Questions

- other formalisms to assist with refactoring?
- formal concept analysis
- program slicing
- description logics
- What is behaviour ? Behaviour preserving ?
- real-time systems (time); embedded systems (power & memory);
safety critical systems (liveness, ...)
- What are good program invariants ? How to express them ?
- What is structure ? Structure improving ?
- How to measure impact/effect of refactoring on software quality ?
- Co-evolution

- How to address consistency maintenance and change propagation ?
* code < design < architecture < requirements

- How to refactor at higher abstraction levels ?
* UML models, design patterns, architectures, components

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 18

Practical Questions

- How to measure complexity of refactorings ?
- Comparing different refactorings in same formalism
- Comparing same refactoring in different formalisms

- computational complexity of preconditions
- computational complexity of applying the refactoring
- readability/understandability of the refactoring

- How can we determine where and why to refactor ?
- bad smells

- Where does refactoring fit in the development
process ?

- How to combine refactoring with other techniques ?
- design patterns, application frameworks, aspect-oriented
programming, generative programming, ...

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 19

Opportunities for collaboration

- Applying refactorings to UML models
- Fits in the MDA model transformation context

- Addresses theoretical and practical aspects
* Theoretical
- deciding on an appropriate formalism ; subset of UML ;
definition of behaviour
* Practical
- developing tools / plug-ins for model refactoring

- Opportunities
- Suggest as a topic for ERCIM Strategy 2004

- Propose a small-scale European project (possible with support

from ERCIM)
- academic partners: UA, UMH, CWT, ... ?
* industrial partners ?

© Tom Mens, 8 July 2004, BENEVOL 2004 workshop, University of Antwerp 20

