Capabilities, Trust, and Risk

= random rant -

Sophia Drossopoulou & James Noble
WG2.16, 13 May 2013

vodafone UK 3G 19:05

You Won!

Klondike Deal 1

You've won 1000 times.

Time: 3:15 Stock: 24
Available on the

It o Getall 50 games: | @& Appstore |

Undo

Stolen shamelessly from David Wagner, http://www.cs.berkeley.edu/~daw/talks/PLASO6.ps

18
I}
-T.
|
o
2.
0
(&)
g
(8

Object Capabilities

» Unforgeable capabllities
» Possession implies Right
» No other access control checking
»Who do you trust? Who do you really trust?
»Who are you holding on to! Who are you dreaming of?

» Principle of Least Authority
» No Ambient Authority

» Capabilities + Pure Object-Orientation = Object-Capabiliti

Object Capabilities

Bob

Aim
Use object capabilities
(and nothing but object capabilities)
to support cooperation / commerce
between mutually untrusting parties

Meta-Aim
Understand how you could do this
Understand code that claims to do this

Distributed Electronic Rights in JavaScript

Mark S. Miller!, Tom Van Cutsem?, and Bill Tulloh

! Google, Inc.
2 Vrije Universiteit Brussel

bstract. Contracts enable mutually suspicious parties to cooperate safely
rough the exchange of rights. Smart contracts are programs whose behavior
iforces the terms of the contract. This paper shows how such contracts can be
ecified elegantly and executed safely, given an appropriate distributed, secure,
rsistent, and ubiquitous computational fabric. JavaScript provides the ubiquity
1t must be significantly extended to deal with the other aspects. The first part
" this paper is a progress report on our efforts to turn JavaScript into this fabric.
> demonstrate the suitability of this design, we describe an escrow exchange
ntract implemented in 42 lines of JavaScript code.

» Smart Contracts

ESOP’13

var transfer =

» “understandable by non-experts”

» Real JavaScript
» Distributed, Concurrent,

» Generic, Symmetrical

10

11

12

13

14

var failOnly = cancellationP

var escrowkExchange =

(decisionP
var makeEscrowPurseP = Q

var escrowPurseP = makeEsc

QO (decisionP) . then (
=> { dstPurseP ! deposit
=> { srcPurseP ! deposit (

return escrowPurseP ! deposit (

4

cancellation => { throw

(

7

var decide;
var decisionP =

Exchange Contract

Stock
Issuer

Money

Issuer 6
$)

Escrow

Agent

Exchange Contract

Stock
Issuer

Money

Issuer 6
$)

Escrow

Agent

Escrow Agent
gives out contracts

Stock
X Issuer

&

1 var makeContractHost = () => {
> var m = WeakMap () ;

3 return def ({
setup: contractSrc => {

N

5 contractSrc = ' '+contractSrc.

6 var tokens = [];

7 var argPs = [];

8 var resolve;

9 var resultP = Q.promise(r => { resolve = r; });
10 var contract = confine (contractSrc, {Q: 0Q});

11 var addParam = (i, token) => {

12 tokens[i] = token;

13 var resolveArg;

14 araPslil = O.oromigsel(r => { resolveAra = r: }):

Escrow Agent

f escrowAgent = object { // well known singleton
class contract.new(name’ : String) { ... } /see fig 3

var terms : String
var currentContract : Contract
var waitingForSeller := true

// called by seller to request a seller —side contract
method getSellerContract(terms’: String) —> Contract {
if (!waitingForSeller)
then { Error.raise "already has seller" }
terms = terms’
waitingForSeller := false // now waiting for a buyer
currentContract := contract.new(terms)
return currentContract

Escrow Agent

called by buyer to request a buyer—side contract
2thod getBuyerContract(terms’ : String) —> Contract {
if (waitingForSeller) then {
Error.raise "waiting for a seller" }
if (terms !=terms’) then {
Error.raise "terms don’t match" }
def thisContract = currentContract
terms .= "invalid terms"
currentContract := contract.new(terms)
waitingForSeller := true

return thisContract // Alice the seller moves first

def alice = object {
def alicesContract =
escrowAgent.getSellerContract("some terms")

// Bob the buyer moves second

def bob = object {
def bobsContract =
escrowAgent.getBuyerContract(" some”

Contract

- var transfer = (decisionP, srcPurseP, dstPurseP, amount) => {
 wvar makeEscrowPurseP = Q.join(srcPurseP ! makePurse,

; dstPurseP ! makePurse) ;
. var escrowPurseP = makeEscrowPurseP ! () ;

. Q(decisionP) .then(/l setup phase 2
: _ => { dstPurseP ! deposit (amount, escrowPurseP); 1},
z => { srcPurseP ! deposit (amount, escrowPurseP); });

. return escrowPurseP ! deposit (amount, srcPurseP); //phase 1l

1

) var failOnly = cancellationP => Q(cancellationP) .then (
| cancellation => { throw cancellation; });

 var escrowExchange = (a, b) => { /l a from Alice, b from Bob

. var decide; 0

. var decisionP = Q.promise (resolve => { decide = resolve;

Contract

ss contract.new(name’ : String) {

rar offered := false

rar sellersGoods : m.Purse /P
rar amount : Number

ar price : Number

ar sellersMoney : m.Purse

nethod offer(sellersGoods’ : m.Purse,
amount’ : Number,
price’ : Number,
sellersMoney’ : m.Purse) {
sellersGoods := sellersGoods’
amount := amount’
price := price’
sellersMoney := sellersMoney’
offered := true

// Alice the seller
def mDst = mint.newPurse("Alice’ s m
def gSrc = goods.newPurse("Alice’s g
alicesContract. offer (gSrc, 7, 10, mDst)

// Bob the buyer
def mSrc = mint.newPurse("Bob’ s mSrc", 1
def gDst = goods.newPurse("Bob’ s’ s gDst'
bobsContract.bid(gDst, 7, 10, mSrc)

method bid(buyersGoods : m.Purse,
amount’ : Number,
price’ : Number,
buyersMoney : m.Purse) —> Done {
ontract if (!offered) then { Error.raise "Not offered" }
if ((amount |=amount’) || (price != price’)) then
{ Error.raise "Bid/Offer mismatch" }
if ((amount < 0) || (price < 0)) then
{ Error.raise "Bid/Offer fraud" }

// check purses are from the same mints
buyersGoods.deposit(0, sellersGoods)
buyersMoney.deposit(0, sellersMoney)

// here we go
def moneyEscrow : m.Purse = buyersMoney.makePurse

moneyEscrow.deposit(price, buyersMoney)
// exceptions are not caught here, so end the bid

def goodsEscrow : m.Purse = sellersGoods.makePurse
try { goodsEscrow.deposit(amount, sellersGoods) }
catch { - —> buyersMoney.deposit(price, moneyEscrow);
Error.raise "TXN FAILURE" }

sellersMoney.deposit(price, moneyEscrow)
buyersGoods.deposit(amount, goodsEscrow)

Trust
what does trust mean?
who trusts whom?

» Buyer and Sellers
» Trust their Mints & Purses, and the Escrow Agent

» Don't trust each other — cannot have mutual references
» Mints & Purses trust nobody \

» Escrow Agent (and Contract)
» Don't trust Buyers or Sellers or Mints or Purses...

» So what guarantees can they supply?

Risk
what’s the worst that can happen if | trust?

Buying 10 apples for £10, £1000 in your purse. New purse: £1.

» Hand out main purse: best case 10@ £10; worst: 0@Q) £1000

» Temporary purse: 0@ £I1; 0@ £I|

» Escrow/w main purse: 0@ £I5; 0@ £1000 \
» Escrow/ temp purse: 0Q £17, 0@ £2

» Say we really trust escrow: 0@ £15; 0@ £0

24

